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. Newtonian Gravity

A. Newtonian Gravitational Force

Newton published hislaw of gravitational attraction in 1687. This saysthat al things that have
mass attach each other. The attraction is proportional to the product of the masses and inversely

proportional to the distance between them.
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Newton's Law of Gravity

Two Masses, M and m, Attract Each Other
With the Force, |F|.

The force is directed toward the other mass.
Each attracts the other.

The value G is a constant that was first measured by Cavendish in 1798 using lead balls.

The two masses are assumed to be points. However it can be shown that if the masses are
spherical symmetric the same equation holds using the center of symmetry as the location for the total
mass of the object. The equation holds for extended masses in this special, but useful case.



Newton's Law of Gravity
For Extended Masses

The equation holds when the masses are
spherically symmetric. The force acts as
if all the mass is at the center.

This can be proved by looking at the mass as being made up of an infinite number of small points of
volume dV and mass dm =r dV wherethe density is r . The effects of all these pointsis added up.

Thisistheintegral of calculus. (See the basic physics note for afew details.) This procedureisrequired
for the general case.

In the spherically symmetric case you get the result above, but only for points outside the mass.
For pointsinside the mass, only the massthat is at aradius less than that of the test mass counts. So the
force decreases as you go inside a spherical mass. (These results are just dependent on the inverse
square law nature of the force. So they also hold for the electrical force.)) The case of non-spherical
Newtonian gravity will be taken up shortly.

B. Newtonian Gravitational Field
Newton’'s second law states that the force and acceleration are related through the mass. The

mass occurs in both the equation for the gravitational force and the equation for the accel eration that
force causes. Assuming that some small test mass, m is used, then the force on that massis:
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where we have introduced the Newtonian gravitational acceleration g. (Thisis not what we call the
gravitational acceleration of the earth, that is dightly different.) Notice that we can find the value of the
acceleration of gravity from these formulas, at least in the spherical approximation:

GM,
g= .
r

e

Thisisthe value on the surface of a spherical earth. It can be measured, for example with afalling
pebble or apendulum. Even if you have an idea of the size of the earth, and hencere , you still do not
know the mass of the earth Mg, but only the product GM . Thisiswhy Cavendish said he had
"weighted the earth" when he measured G.

Thereis an acceleration at each point in space due to the mass M, whether there is atest mass
there or not. We say there isagravitational field. This concept isvery common in physics. Things
produce effects even if there is nothing there to fed it.

C. Newtonian Gravitational Potential

There will be aforce required to move atest mass away from our field source mass, M. This
means that we have added potential energy to the test mass. Call this potential energy V. It will bea
function of the position relative to the mass M. This potential energy must be related to the force
through its spatial gradient. The rate of change of this potential energy with respect to distance isthe
same force as the Newtonian gravitational force. In mathematical terms we say that:

F = -AV
GMm .
r? &
vV = _GMm
r

Thisform for the potential energy, V has the energy zero at an infinite distance from the object M,
(wherer isinfinite). The energy gets more negative as the test mass m approaches the mass M. It
becomesinfinitely large at the origin, but thisisinside the mass and the equation does not hold there.



The value of the potential energy per unit massis related to the nominal gravity on the surface of
the earth

V() _ _GM,
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The standard scientific units of the acceleration of gravity are m/s/s. The units of the potential energy
per unit mass are therefore m?/s?, or velocity squared . (Remember kinetic energy is half the mass times
the velocity squared, so the units are consistent with the definition of energy.)

D. Gravity vector and the Gradient Operator

The differential operator N operating on afunction of position is just a vector that expresses the
rate of change of the function in different directions:

v = Vg Vg Wa
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Here the two notations for Cartesian vectors are used. The direction of this vector will be along the
greatest changein V, and the magnitude is the rate of change in that direction. To obtain the rate of
change in any particular direction, just take the dot product with a unit vector in that direction. (Thereis
an extensive technical note on vectors available. 1n addition the gradient operator is covered more
extensively in atechnical note on basic physics.)

There are two important facts about the gradient. If you take the gradient of a potential function
V, you get the force. The following istrue of this gradient and the force:

1. The direction of the gradient vector is perpendicular to surfaces of constant V,

2. The magnitude of the gradient isinversely proportional to the spacing of surfaces of
constant potential. If the surfaces are close together, the gradient islarge, if far apart it issmall.

Thisis shown below where adiagram of avertical cut of the equal potential surfacesis shown. The
lines are spaced at equally differences of potential. The surfaces, of course, come out of the page and
are three dimensional.
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The distortion are greatly magnified for purposes of illustration. The measured direction of gravity, and
hence the "normal” way we define down, are perpendicular to these equal potentia surfaces. If they
have bumps (as they do in the real world) then the up-down line has variations.



E. Spherical Earth Example

The earth is very large compared to everyday distances we experience. Thisiswhy we can
assume that the earth isflat and only make small errorsin most things we do. Below is a series of
diagrams of a segment of the earth, with each step having higher magnification ( smaller scalein the
mapping terminology.)
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It is clear that normal heights, such asa 100 m ( 300 ft ) 30 story building, are essentialy invisible on
true scale plots of any significant segment of the earth.

A plot of some near earth heights and the gravitational values for a spherical earth are shown
below. Thevauesare for pointsvery near the earth.
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The values of the potential energy per unit mass ( that isVV/m') are shown for anominal earth sizethat is
spherical. Notice that the potentials get smaller in absolute value very slowly as you increase in height.
The difference of these values, divided by the height difference is a good approximation for the
derivative in the vertical direction, which isthe gradient here. Notice that the gradient, which isthe
local value of g, also decreases in magnitude as you go up, but also very slowly. We can often treat the
acceleration of gravity near the earth surface as a constant. (Thisis not true for satellite work however.)

F. Potential Differences Near Earth's Surface
In elementary physicstexts, we learn that the gravitational potential energy is given by
V = mgh
DV = mgDh
The second form is more correct, as we are almost always dealing in differences of potential energies.

This formula can be derived from the general Newtonian Law of Gravity assuming that the height
difference is small compared to the radius of the earth.



Many approximations used for computation are derived using some small, dimensionless
parameter. Both being dimensionless and small are important. Here the parameter will be h/re, the
height above the earth divided by the nominal radius of the earth. The Newtonian potential is given by:

- GM m
r

V =

Consider this equation for two locations, one on the surface of the earth and the second at a height h
abovethe earth. It isthe difference in potentials that we need. For the second we have

~ GM,m

V(h) =
(h) r,+h

The only difference between these two is the denominator. We wish to compute the difference of these
two potentials

DV = V(h)- V(0)

e 1 1u
=|-GM m|g——- —
| ]é%+h A
The key to finding the most significant termisto let:
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where the small parameter h/re has been called a . Substituting this form into the equation for DV one
obtains

GM.maxea ¢
r 81+a;'a

e

DV =

» mgr.a
= mgh
Thisisthe result desired. In this the value of the acceleration of gravity, g, found above has been used.

The approximation 1+a » 1 wasalso used. Herethe height is measured from the surface of the
earth.



I1. The Real Gravity Field of the Earth - Overview

There are several differences between thereal gravity field of the earth and the above
simplification. The two major physical differences are:

1. The earth isrotating. This causes an additional effective force to be felt for all objects
rotating with the earth. Thisincludes apples, pendulums, and people. It does not include earth
satellites. Thisleads to effects on the order of 1/300 of the Newtonian gravitation values.

2. The earth is not homogeneous. These effects are 1/10,000 or |ess than the main effects.
But they can be measured and have some practical consequences.

Therotational effects are not insignificant. Not only do they modify the value of the acceleration
of gravity, they result in a change in the shape of the earth. The earth is approximately an ellipse
revolved about the polar axis. This shape change leads to significant changesis the values of latitude. It
also indirectly leads to many of the map use problems as different people and organizations use different
approximations for the true figure of the earth. Thisleadsto most of the difference in datums. (Thereis
an extensive technical note on datums.)

In addition there are some terminology differences between what Geodesy uses and physics.
In the field of Geodesy, there are some terms and concepts that “look and feel” like things studied in
elementary physics, but are dightly different. This can cause some confusion, especially if one takes
eguations from both physics books and geodesy books.

Physics Geodesy
Gravity Newtonian Gravitation Newtonian Gravitation Plus
Rotational Effects
Force Force, F=ma Force per unit mass,
Body Force f= F/m Acceleration, g,

As seen on Rotating Earth
Potential Force = - Gradient (Potential) Acceleration = + Gradient (Potential)

F = -Nv g = +Nv
Coordinates | Measured from Pole Measured from Equator ( f' )
Polar Angle | (O to 180 degrees) (-90 to 90 degrees)

The main source of differenceistheinclusion of the rotational effectsin the terms used in geodesy.
Thisis done to reflect the measurements seen by an observer rotating on the earth’ s surface, that is
measurements made on the real world. The definitions of several items were made before many of the
concepts used in today’ s elementary physics were discovered. Newton or his contemporaries made
many definitions. The concepts of potential energy, kinetic energy, and the conservation of energy
followed thiswork by 100 years.

The second difference is the relation between the force or acceleration and a potential function. First

geodesy dealsin accelerations, not forces. Thisis because the effects of the mass of an object in
Newton’s second law (F = ma) and hislaw of gravity ( F = GMm/r?) cancel out.
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In geodesy the acceleration is taken as the gradient’ of the potential. In physicsthe forceis the negative
gradient of the potential energy. In geodesy the negative sign isomitted. In physicsterms, the potential
energy of something sitting on the earth is negative. Y ou have to add energy to move it off the earth. In
geodesy the gravity potential is apositive number. It isthe absolute value of the physics value of
potential energy per unit mass. The two potentials are related by a minus sign.

We will have three different sets of quantities used in geodesy,

1. Quantities based on a spherical, non-rotating earth,

2. Quantities based on arotating, ellipsoidal earth without density variations,
3. Quantities based on thereal earth.

Thefirst set isused in elementary physics books. They are not used in geodesy. The second set is used
asabaseline or reference set in geodesy. Differences from the smooth ellipsoidal model are reported.

Earth Gravity Field Quantities

Potential Gravity Acceleration
Spherical Earth \%
Ellipsoidal Earth U=V+F g
Real Earth W=U+T g

Here,

isthe Newtonian Potential for the model earth ( spherical or ellipsoidal)

isthe gravity potential for the model earth - with rotational effects included,

isthe potential for rotational effects. F =w?”p*/2, where p and w are discussed below,
isthe gravity potential for thereal earth,

isthe effect of the inhomogeneitiesin the earth,

is the acceleration due to the model potential, U, and

isthereal gravity acceleration of abody co-rotating with the earth.

Qo -ds7mC<

! The gradient is ameasure of how fast afunction changes. In this case the changes are with respect to position, arate of
change with distance. The gradient isaderivative. Itisaso avector. It pointsin the direction of maximum positive change.
For a spherical earth, the gradient of the gravity potential points to the center of the earth. For therea earth it pointsin the
local down direction. (Inverse of the local vertical).
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I11.  Rotational Effects
A. Ellipsoid Model of Earth

What we call "gravity" in geodesy is the sum of the Newtonian gravitational attraction and
rotational effects. The rotation effect is called centrifugal acceleration. All things co-rotating with the
earth feel it. This causes the earth to have abulge at the equator. For auniform earth, the shape is an
ellipsoid of revolution. (Thisisalso called a spheroid). Thisis the geodetic model we will discussin
this section. The complexity of the bumpsin the real world will be discussed in the later sections.

Rotate Ellipse Making Ellipsoid

One of the waysto define the amount the ellipse differsfrom acircleis called the flattening, f. The
flattening, f, is given by the equation

f:Lbzl_E
a a’

where aisthe longer equatorial radius and b is the shorter polar radius. The flattening of the earth is
about 1/300. If the earth were afluid it would be about 1/230. The earth acts almost asafluid over long
time frames. Newton was the first to predict the flattening of the earth. Another common way to
describe the shape of the ellipse is with the eccentricity, e. Thisis defined as:

e :1-F_

The observed acceleration of gravity isthe sum of the Newtonian gravitational attraction and the
rotational force. The shape of the earth minimizes the potential energy due to the two forces. This makes
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the direction of the observed acceleration of gravity perpendicular to the ellipsoid. Thisline does not go
to the center of the earth except for the poles and points on the equator.

The Newtonian accelerationsis given by

where
G isthe universal gravitational constant, M isthe mass of the earth,

r isthe radius of the earth (or distance from earth center of mass to observer), and
€, isaunit vector that points outward from the center of the earth to the observation point.

Thisequation isonly valid outside the earth. Inside the earth only the below the observer contributes to
the Newtonian acceleration.

The centrifugal acceleration is given by

2 ~
C

where

w=2p/T istherotation rate of the earth (T is 1 sidereal day ),
p isthe distance from the axis of rotation to the observer shown in the figure, and

e, isaunit vector along the outward direction of p.

This applies only to objects that rotate with the earth. Satellites in space do not feel this acceleration.
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B. Gravity of Perfect Ellipsoid / Geodetic Latitude

The figure below isa summary of the acceleration vectors and the up-down lines for a point on the
rotating earth. The up line is defined by the observed gravity acceleration, g, for an object co-rotating
with the earth. Thisisthe sum of the rotational and Newtonian gravitation effects. These together cause
the shape of the earth to budge at equator and form an ellipsoid in the perfect earth case.

—
dg

Equator

Quarter of Earth
Ellipsoid Crossection

The Newtonian gravitational attraction, which we will denote g, does point at the center of mass
of the earth. But the sum of forces we feel does not. The rotational acceleration, which we will call &,
acts outward from the axis of rotation. These accelerations are shown in the diagram. Note that the
vectors are not drawn to scale.

The line from the observed up-down line generates the usual latitude we use. Thisis called Geodetic
(f ). Itisthekind found on maps. A latitude from the line to the center of the earth also can be defined.

Thisisgeocentric (f ¢) latitude. 1t would be the observed latitude on a spherical earth. In the rea
world, it is used mostly in satellite work.

The observed acceleration, g, is defined by the vector sum of the g,and a. . The total isthe
earth's acceleration of "gravity" as defined in geodesy. The rotational acceleration term is maximum at
the equator and zero at the poles because the moment arm p varies with latitude. In the real world, the
maximum & is smaller than g, by afactor of 300. Therefore the effects on g, and angles, are small. But
the earth is large and even small effects on angles can cause changes of 10’s of km.
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The nominal Newtonian acceleration is about 980 cm/s” and the maximum rotational term about
3 cm/s?. In geodesy accelerations of gravity are called gal's, short for Galileo. One gal is one cm/s>.
Thisisalarge unit for measuring variations, so the milligal, mgal or 1/1000th gal, commonly occurs.

The gravity value at each geodetic latitude for an ellipsoid is given by:

g.cos’f +g,v1- e’ sin’f
J1- €°sin’f

where ge i's the accel eration at the equator, gp, is the acceleration at the poles, and e is the eccentricity.
Thisisnot as complicated asit looks. It iseasy to show that

g:\/l- e’

This equation is often written using the symbol gamma, g, instead of g. Often gammais used for

theoretical gravity from a perfect ellipsoid and g for the real gravity from the lumpy, non-uniform real
earth. Another form of thisequationis

1+ksin?f

0=, —/——,
JJ1+e?sin?f

with the auxiliary value k given by

b9,
ag.

k = -1

Thisvalue is graphed in the next figure along with the two components.
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The two components and the total acceleration of gravity on the ellipsoid are a function of
latitude as show in the above figure. Thetotal acceleration is obtained by adding the Newtonian term
and the centrifugal term as vectors. The Newtonian acceleration is opposed by the rotation terms
everywhere except at the poles. It istherefore larger than the total value. The Newtonian term increases
at the poles because the surface is closer to the center of mass. The gravity at the polesisabout 5 gal (5
cm/s/s) larger than at the equator. About half of this effect is being closer to the center and therest is
the difference in the rotation term, the centrifugal acceleration.

Thedirection “Up” is aso defined from the sum of the forces. It is perpendicular to the ellipsoid
surface. It'sinverse, “Down”, does not point to the center of the earth. We historically defined latitude
from observations of stars, with respect to the local up called the local vertical. The historical definition
of latitude corresponds to the angle made the line perpendicular to the ellipsoid, not the one to the center
of the earth. Thelocal vertical is perpendicular to the ellipsoid in the absence of inhomogenates.

16



The latitude we see on maps, called geodetic latitude, comes from this perpendicular to the
ellipsoid. Thislatitude is commonly called geographic latitude, but thisterm is not well defined in the
scientific literature. Officialy it is geodetic latitude. Usually when you see aterm called geodetic
something, it refers to definitions based on the ellipsoid. The coordinates using the vertical sensed by a
bubble level, which respondsto the real variation in the gravity field, are discussed in section VII.

The angle made by the line to the center of the earth is called geocentric latitude. Thisisthe only
latitude in the spherical earth model. Today geocentric latitude is used mainly in the field of artificial
earth satellites.
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IV.  Potential Surfaces, Geoid, and Heights

The surfaces of constant W are surfaces of constant potential in the geodesy nomenclature. These are
also surfaces of constant potential energy. The minus sign doesn't change the form of a constant surface.
Water would assume one of these surfacesin abowl, lake or ocean. These surfaces are called “ Level
Surfaces”2. Mean sea level is one particular surface of constant W. This particular surface can be
extended over land. This particular level surfaceis called the geoid.

To this point, the earth has been idealized. But the real earth has oceans, mountains and other density
variations. These variations are small, but cause the real gravity valuesto differ from the ssmple
ellipsoid model. Inthe ellipsoid model, the geoid isan elipsoid. In the real world the geoid has bumps.
Now we will turn to the effects of the inhomogenates of the real world. The largest effects will be on
heights.

The form of the surfaces of W must be measured; they cannot be computed from afew constants and a
model. They depend on the real world mass variations, which varies on many distance scales.
Computing the distance from the geoid to the center of the earth is not possible without large numbers of
real world measurements. The ellipsoid is defined mathematically with respect to the center of the earth
and itsradiusis easily computed. Knowing the distance between the ellipsoid and geoid therefore would
define the geoid. The form of the geoid over large distances was not well known until satellites were
launched.

Starting with a"stake in the sand" that defines mean sealevel at the shore, the heights of the land can be
measured. With classical survey techniques, thisis done with a series of measurements made from point
to point.

These heights measured by classical methods are measured from the geoid. This happens because of the
way heights are measured. Transits (telescopes on atripod) are used, with angles measured with respect
to the local vertical. Thelocal up vector measured with a plumb bob or spirit level isthe
perpendicular to the real geoid.

2 |evel Surfaces are the three-dimensional analogue of contours in two dimensions. In one dimension if you find the
locations where the function has a particular value, you get a set of points. 1f you have afunction of two dimensions, such as
height as afunction of latitude and longitude, the set of points of aparticular valueisaline. Thisis one of the contours. If
you have afunction of latitude, longitude and height the set of points of a particular valueis asurface. Picking one potential
defines a surface. One particular value defines the geoid.
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Asthetransit is moved from place to place, the local vertical will follow the hills and valleys of W.
Therefore the geoid is the reference surface for classical height measurements. As one chief of the US

National Geodetic Survey once said, “we are in the position of knowing heights very accurately with
respect to a surface we know poorly”.

T Geora

Ellipsoid
- L.

Classical Surveying
Follows Geoid

Heights determined in this manor are called orthometric heights or mean sea level (msl) heights.

(Orthometric and mdl height are dlightly different, but the two terms are commonly used to mean the
same thing.)
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Heights determined in this manor are called orthometric heights or mean sea level (msl) heights.
Except in geodetic science literature, where you see msl height, it usually means orthometric height.

Technically orthometric and md height are dightly different. Ocean currents and other effects slightly
modify the real surface height of the sea. All the difference between real msl and orthometric heights
can be classified as “ oceanography”.

Heights measured from the ellipsoid are called ellipsoidal heights or geodetic heights. Satellite
systems measure ellipsoidal heights. Thisis not what we see on maps or in databases. These contain
orthometric height. Because satellite based positioning is now very important, there is a need for agood
measurement of the geoid location. Thisis done by measuring the vertical distance between the
ellipsoid and the real world geoid as afunction of location. This difference is called undulation of the
vertical or separation of the geoid. The symbol N is used for the undulation.

Up Up
H orthometric
Geoid or msl height
lr .-"L .-"‘Jr i
.- L i e h ellipsoidal
Ellipsoid height

N geoid undulation or
geoid seperation

h=H + N

llipsoid

Geoid - Ellisoid Diagram
Two and Three Dimensions

While the symbols h and H are commonly used for the two heights, there is no standard for which means
orthometric or ellipsoidal. Here we will use the DoD standard,

h for ellipsoidal, and
H for orthometric height.

Note that in all casesthe undulation, N is the orthometric minus the ellipsoidal heights. It is the distance
from the ellipsoid to the geoid.
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Thus
= H+N

h
N = H-h"

where the values are taken at the same point. N isafunction of location. Finding N as afunction of
latitude and longitude is how we determine the geoid.

The above figure gives aworldwide view of the geoid surface. The values range from about -100 m to +
100 m. World wide ellipsoids are chosen so that the average undulation is zero over theworld. This
means that there are as many places with the geoid above the ellipsoid as there are with the geoid below
the ellipsoid. There are many small areavariations in the geoid that do not show up in thisfigure.

Because orthometric heights (msl) were the only ones historically measurable, they are the heights
shown on maps and in databases. All heights on maps are orthometric. However position
measurements made using satellite systems, such as GPS, are inherently done in an earth centered, earth
fixed Cartesian X-Y-Z system. These can easily be converted to latitude, longitude, and ellipsoidal
height. (Also called geodetic height). The geoid undulation, N, is needed to convert these to map type
(orthometric or mdl) heights. Thisvalueisonly know at the meter level in most places.
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V. Geoid and Topography

The geoid has variations, or components, at many spatial scales. At long lengthsit feelsthe
influences of most of the earth and its variationsin density. However on a short scale, small variations
are dominated by local effects such as near by mountains etc.

Gravity Points Slightly
Toward Mountain Center

Geoid Is Perpendicular
To Gravity Vectors

" One Possible Geoid

Tilt of Gravity (Deflection of Vertical)

Defines Local Shape of Geoid - But Another Possible Geoid
Not the Level.

Geoid Follows Mass Bumps

Thisisillustrated in the above figure. The geoid seems to follow the mountain range up and down. This
can be seen from the condition that the geoid is perpendicular to the local gravity vector. The absolute
value of the geoid level can vary alot because it isinfluenced by mass variations over avery long range,
but the small bumps look like local topography - at least on the 100 - 1000 km range.
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