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I. Newtonian Gravity 
 

A. Newtonian Gravitational Force 
 
Newton published his law of gravitational attraction in 1687.  This says that all things that have 

mass attach each other.  The attraction is proportional to the product of the masses and inversely 
proportional to the distance between them. 
 

 
 
The value G is a constant that was first measured by Cavendish in 1798 using lead balls.   
 
 The two masses are assumed to be points.  However it can be shown that if the masses are 
spherical symmetric the same equation holds using the center of symmetry  as the location for the total 
mass of the object. The equation holds for extended masses in this special, but useful case. 
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 This can be proved by looking at the mass as being made up of an infinite number of small points of 
volume dV  and mass dVdm ρ= where the density is ρ .  The effects of all these points is added up. 
This is the integral of calculus. (See the basic physics note for a few details.)   This procedure is required 
for the general case.   
 

In the spherically symmetric case you get the result above, but only for points outside the mass.  
For points inside the mass, only the mass that is at a radius less than that of the test mass counts.  So the 
force decreases as you go inside a spherical mass.  (These results are just dependent on the inverse 
square law nature of the force. So they also hold for the electrical force.)    The case of non-spherical 
Newtonian gravity will be taken up shortly.   
 

B. Newtonian Gravitational Field 
 
 

 Newton’s second law states that the force and acceleration are related through the mass. The 
mass occurs in both the equation for the gravitational force and the equation for the acceleration that 
force causes. Assuming that some small test mass, m is used, then the force on that mass is: 
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where we have introduced the Newtonian gravitational acceleration g.  (This is not what we call the 
gravitational acceleration of the earth, that is slightly different.)  Notice that we can find the value of the 
acceleration of gravity from these formulas, at least in the spherical approximation: 
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This is the value on the surface of a spherical earth.  It can be measured, for example with a falling 
pebble or a pendulum.  Even if you have an idea of the size of the earth, and hence re , you still do not 
know the mass of the earth Me, but only the product  GMe .  This is why Cavendish said he had 
"weighted the earth" when he measured G.  
 
 There is an acceleration at each point in space due to the mass M, whether there is a test mass 
there or not.  We say there is a gravitational field.  This concept is very common in physics.  Things 
produce effects even if there is nothing there to feel it.   
 

C. Newtonian Gravitational Potential  
 

There will be a force required to move a test mass away from our field source mass, M.  This 
means that we have added potential energy to the test mass.  Call this potential energy V.  It will be a 
function of the position relative to the mass M.   This potential energy must be related to the force 
through its spatial gradient.  The rate of change of  this potential energy with respect to distance is the 
same force as the Newtonian gravitational force.   In mathematical terms we say that: 
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This form for the potential energy, V has the energy zero at an infinite distance from the object M, 
(where r is infinite).  The energy gets more negative as the test mass m approaches the mass M.  It 
becomes infinitely large at the origin, but this is inside the mass and the equation does not hold there. 
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 The value of the potential energy per unit mass is related to the nominal gravity on the surface of 
the earth 
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The standard scientific units of the acceleration of gravity are m/s/s.  The units of the potential energy 
per unit mass are therefore  m2/s2,  or velocity squared . (Remember kinetic energy is half the mass times 
the velocity squared, so the units are consistent with the definition of energy.) 
 
 D. Gravity vector and the Gradient Operator 
 

 The differential operator ∇
r

 operating on a function of position is just a vector that expresses the 
rate of change of the function in different directions: 
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Here the two notations for Cartesian vectors are used. The direction of this vector will be along the 
greatest change in V, and the magnitude is the rate of change in that direction.  To obtain the rate of 
change in any particular direction, just take the dot product with a unit vector in that direction. (There is 
an extensive technical note on vectors available.  In addition the gradient operator is covered more 
extensively in a technical note on basic physics.) 
 
 There are two important facts about the gradient.  If you take the gradient of a potential function 
V, you get the force.  The following is true of this gradient and the force: 
 

1. The direction of the gradient vector is perpendicular to surfaces of constant V, 
 
2. The magnitude of the gradient is inversely proportional to the spacing of surfaces of 
constant potential.  If the surfaces are close together, the gradient is large, if far apart it is small. 
 

This is shown below where a diagram of a vertical cut of the equal potential surfaces is shown.  The 
lines are spaced at equally differences of potential.  The surfaces, of course, come out of the page and 
are three dimensional.   
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The distortion are greatly magnified for purposes of illustration. The measured direction of gravity, and 
hence the "normal" way we define down, are perpendicular to these equal potential surfaces.  If they 
have bumps (as they do in the real world) then the up-down line has variations.  
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 E. Spherical Earth Example 
 
 The earth is very large compared to everyday distances we experience.  This is why we can 
assume that the earth is flat and only make small errors in most things we do.  Below is a series of 
diagrams of a segment of the earth, with each step having higher magnification ( smaller scale in the 
mapping terminology.)  
 

 
 
It is clear that normal heights, such as a 100 m ( 300 ft )  30 story building,  are essentially invisible on 
true scale plots of any significant segment of the  earth. 
 
 A plot of some near earth heights  and the gravitational values for a spherical earth are shown 
below.  The values are for points very near the earth.  
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The values of the potential energy per unit mass ( that is V/m ) are shown for a nominal earth size that is 
spherical.  Notice that the potentials get smaller in absolute value very slowly as you increase in height.  
The difference of these values, divided by the height difference is a good approximation for the 
derivative in the vertical direction, which is the gradient here.  Notice that the gradient, which is the 
local value of g, also decreases in magnitude as you go up, but also very slowly.  We can often treat the 
acceleration of gravity near the earth surface as a constant. (This is not true for satellite work however.) 
 
 F. Potential Differences Near Earth's Surface 
 
 In elementary physics texts, we learn that the gravitational potential energy is given by 
 

hgmV

hgmV
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The second form is more correct, as we are almost always dealing in differences of potential energies.  
This formula can be derived from the general Newtonian Law of Gravity assuming that the height 
difference is small compared to the radius of the earth. 
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  Many approximations used for computation are derived using some small, dimensionless 
parameter.  Both being dimensionless and small are important.  Here the parameter will be h/re, the 
height above the earth divided by the nominal radius of the earth.  The Newtonian potential is given by: 
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Consider this equation for two locations, one on the surface of the earth and the second at a height h 
above the earth.  It is the difference in potentials that we need.  For the second we have 
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The only difference between these two is the denominator. We wish to compute the difference of these 
two potentials 
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The key to finding the most significant term is to let: 
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where the small parameter h/re has been called α .  Substituting this form into the equation for V∆ one 
obtains 
 

mgh

mgr

1r

mGM
V

e

e

e

=
α≈









α+
α

=∆

 

 
This is the result desired. In this the value of the acceleration of gravity, g , found above has been used. 
The approximation 11 ≈α+  was also used.  Here the height is measured from the surface of the 
earth. 
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II.  The Real Gravity Field of the Earth - Overview 
 
 There are several differences between the real gravity field of the earth and the above 
simplification.  The two major physical differences are: 
 

1. The earth is rotating.  This causes an additional effective force to be felt for all objects 
rotating with the earth.  This includes apples, pendulums, and people.  It does not include earth 
satellites. This leads to effects on the order of 1/300 of the Newtonian gravitation values. 
 
2. The earth is not homogeneous.  These effects are 1/10,000 or less than the main effects. 
But they can be measured and have some practical consequences. 

 
 The rotational effects are not insignificant.  Not only do they modify the value of the acceleration 
of gravity, they result in a change in the shape of the earth.  The earth is approximately an ellipse 
revolved about the polar axis.  This shape change leads to significant changes is the values of latitude.  It 
also indirectly leads to many of the map use problems as different people and organizations use different 
approximations for the true figure of the earth.  This leads to most of the difference in datums. (There is 
an extensive technical note on datums.) 
 
 In addition there are some terminology differences between what Geodesy uses and physics.   
In the field of Geodesy, there are some terms and concepts that “look and feel” like things studied in 
elementary physics, but are slightly different. This can cause some confusion, especially if one takes 
equations from both physics books and geodesy books. 
 
 

 Physics Geodesy 
Gravity Newtonian Gravitation  Newtonian Gravitation Plus 

Rotational Effects 
Force Force, F=ma 

Body Force  f= F/m 
Force per unit mass, 
Acceleration, g, 
As seen on Rotating Earth 

Potential Force = - Gradient (Potential) 

VF ∇−=
rr

 

Acceleration = + Gradient (Potential) 

Vg ∇+=
rr

 
Coordinates 
 Polar Angle 

Measured from Pole 
(0 to 180 degrees) 

Measured from Equator ( 'φ  ) 
(-90 to 90 degrees) 

 
The main source of difference is the inclusion of the rotational effects in the terms used in geodesy.  
This is done to reflect the measurements seen by an observer rotating on the earth’s surface, that is 
measurements made on the real world.  The definitions of several items were made before many of the 
concepts used in today’s elementary physics were discovered.  Newton or his contemporaries made 
many definitions.  The concepts of potential energy, kinetic energy, and the conservation of energy 
followed this work by 100 years.  
 
The second difference is the relation between the force or acceleration and a potential function.  First 
geodesy deals in accelerations, not forces.  This is because the effects of the mass of an object in 
Newton’s second law (F = ma) and his law of gravity ( F = GMm/r2 ) cancel out.  
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In geodesy the acceleration is taken as the gradient1 of the potential.  In physics the force is the negative 
gradient of the potential energy.  In geodesy the negative sign is omitted.  In physics terms, the potential 
energy of something sitting on the earth is negative.  You have to add energy to move it off the earth.  In 
geodesy the gravity potential is a positive number.  It is the absolute value of the physics value of 
potential energy per unit mass. The two potentials are related by a minus sign. 
 
 We will have three different sets of quantities used in geodesy, 
 

1.  Quantities based on a spherical, non-rotating earth, 
2.  Quantities based on a rotating, ellipsoidal earth without density variations, 
3.  Quantities based on the real earth. 

 
The first set is used in elementary physics books.  They are not used in geodesy.  The second set is used 
as a baseline or reference set in geodesy.  Differences from the smooth ellipsoidal model are reported. 
 

Earth Gravity Field Quantities 
 Potential Gravity Acceleration 

Spherical Earth V  
Ellipsoidal Earth U=V+Φ  γ  

Real Earth W=U+T g 
 

Here, 
 
 V is the Newtonian Potential for the model earth ( spherical or ellipsoidal) 
 U is the gravity potential for the model earth - with rotational effects included, 

 Φ  is the potential for rotational effects. 2/p22ω=Φ , where p and ω  are discussed below, 
 W is the gravity potential for the real earth, 
 T is the effect of the inhomogeneities in the earth, 
 γ  is the acceleration due to the model potential, U, and 
 g is the real gravity acceleration of a body co-rotating with the earth. 
 
 
 
 

                                                             
1 The gradient is a measure of how fast a function changes. In this case the changes are with respect to position, a rate of 
change with distance.  The gradient is a derivative.  It is also a vector.  It points in the direction of maximum positive change.  
For a spherical earth, the gradient of the gravity potential points to the center of the earth.  For the real earth it points in the 
local down direction. (Inverse of the local vertical). 
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III. Rotational Effects 
 
 A. Ellipsoid Model of Earth 
 
 What we call "gravity" in geodesy is the sum of the Newtonian gravitational attraction and 
rotational effects. The rotation effect is called centrifugal acceleration.  All things co-rotating with the 
earth feel it.   This causes the earth to have a bulge at the equator.  For a uniform earth, the shape is an 
ellipsoid of revolution.  (This is also called a spheroid). This is the geodetic model we will discuss in 
this section.  The complexity of the bumps in the real world will be discussed in the later sections. 
 
 

 
 
One of the ways to define the amount the ellipse differs from a circle is called the flattening, f. The 
flattening, f, is given by the equation 
 

a
b

a
ba

f −=
−

= 1  , 

 
where a is the longer equatorial radius and b is the shorter polar radius. The flattening of the earth is 
about 1/300.  If the earth were a fluid it would be about 1/230.  The earth acts almost as a fluid over long 
time frames.  Newton was the first to predict the flattening of the earth. Another common way to 
describe the shape of the ellipse is with the eccentricity, e.  This is defined as: 
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The observed acceleration of gravity is the sum of the Newtonian gravitational attraction and the 
rotational force. The shape of the earth minimizes the potential energy due to the two forces. This makes 
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the direction of the observed acceleration of gravity perpendicular to the ellipsoid. This line does not go 
to the center of the earth except for the poles and points on the equator. 
 
The Newtonian accelerations is given by 
 

r2n ê
r

GM
g −=
r

 

 
where  
 

G is the universal gravitational constant, M is the mass of the earth,  
r is the radius of the earth (or distance from earth center of mass to observer), and 

rê  is a unit vector that points outward from the center of the earth to the observation point.  
 

This equation is only valid outside the earth.  Inside the earth only the below the observer contributes to 
the Newtonian acceleration. 
 
The centrifugal acceleration is given by 
 

p
2

c êpa ω=
r

 

 
where 
 

 T/2π=ω  is the rotation rate of the earth (T is 1 sidereal day ), 
 p is the distance from the axis of rotation to the observer shown in the figure, and 
 pê  is a unit vector along the outward direction of p. 

 
This applies only to objects that rotate with the earth.  Satellites in space do not feel this acceleration. 
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 B. Gravity of Perfect Ellipsoid / Geodetic Latitude 
 
The figure below is a summary of the acceleration vectors and the up-down lines for a point on the 
rotating earth. The up line is defined by the observed gravity acceleration, g,  for an object co-rotating 
with the earth.  This is the sum of the rotational and Newtonian gravitation effects. These together cause 
the shape of the earth to budge at equator and form an ellipsoid in the perfect earth case. 
 
 

 
 
 The Newtonian gravitational attraction, which we will denote gn, does point at the center of mass 
of the earth.  But the sum of forces we feel does not.  The rotational acceleration, which we will call ac, 
acts outward from the axis of rotation.  These accelerations are shown in the diagram. Note that the 
vectors are not drawn to scale. 
 
The line from the observed up-down line generates the usual latitude we use.  This is called Geodetic 
(φ ).  It is the kind found on maps. A latitude from the line to the center of the earth also can be defined.  
This is geocentric (φ′ ) latitude.  It would be the observed latitude on a spherical earth. In the real 
world, it is used mostly in satellite work. 
  
 The observed acceleration, g, is defined by the vector sum of the gn and ac . The total is the 
earth's acceleration of "gravity" as defined in geodesy.  The rotational acceleration term is maximum at 
the equator and zero at the poles because the moment arm p varies with latitude.  In the real world, the 
maximum ac is smaller than gn by a factor of 300.  Therefore the effects on g, and angles, are small.  But 
the earth is large and even small effects on angles can cause changes of 10’s of km. 
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 The nominal Newtonian acceleration is about 980 cm/s2 and the maximum rotational term about 
3 cm/s2.  In geodesy accelerations of gravity are called gal's, short for Galileo.  One gal is one cm/s2.  
This is a large unit for measuring variations, so the milligal, mgal or 1/1000th  gal, commonly occurs.  
 
The gravity value at each geodetic latitude for an ellipsoid is given by: 
 

φ−

φ−+φ
=

22

22
p

2
e

sine1

sine1gcosg
g  

 
where ge is the acceleration at the equator, gp, is the acceleration at the poles, and e is the eccentricity.  
This is not as complicated as it looks.  It is easy to show that  
 

2e1
a

b
−=  . 

 
This equation is often written using the symbol gamma, γ , instead of g.  Often gamma is used for 
theoretical gravity from a perfect ellipsoid and g for the real gravity from the lumpy, non-uniform real 
earth.  Another form of this equation is 
 

φ+

φ+
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with the auxiliary value k given by 
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This value is graphed in the next figure along with the two components. 
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 The two components and the total acceleration of gravity on the ellipsoid are a function of 
latitude as show in the above figure.  The total acceleration is obtained by adding the Newtonian term 
and the centrifugal term as vectors.  The Newtonian acceleration is opposed by the rotation terms 
everywhere except at the poles.  It is therefore larger than the total value.  The Newtonian term increases 
at the poles because the surface is closer to the center of mass.  The gravity at the poles is about 5 gal ( 5 
cm/s/s ) larger than at the equator.  About half of this effect is being closer to the center and the rest is 
the difference in the rotation term, the centrifugal acceleration. 
 
The direction “Up” is also defined from the sum of the forces.  It is perpendicular to the ellipsoid 
surface.  It’s inverse, “Down”, does not point to the center of the earth.   We historically defined latitude 
from observations of stars, with respect to the local up called the local vertical. The historical definition 
of latitude corresponds to the angle made the line perpendicular to the ellipsoid, not the one to the center 
of the earth.  The local vertical is perpendicular to the ellipsoid in the absence of inhomogenates. 
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 The latitude we see on maps, called geodetic latitude, comes from this perpendicular to the 
ellipsoid. This latitude is commonly called geographic latitude, but this term is not well defined in the 
scientific literature.  Officially it is geodetic latitude. Usually when you see a term called geodetic 
something, it refers to definitions based on the ellipsoid. The coordinates using the vertical sensed by a 
bubble level, which responds to the real variation in the gravity field, are discussed in section VII.  
 
 The angle made by the line to the center of the earth is called geocentric latitude. This is the only 
latitude in the spherical earth model.  Today geocentric latitude is used mainly in the field of artificial 
earth satellites. 
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IV. Potential Surfaces, Geoid, and Heights 
 
The surfaces of constant W are surfaces of constant potential in the geodesy nomenclature.  These are 
also surfaces of constant potential energy. The minus sign doesn't change the form of a constant surface. 
Water would assume one of these surfaces in a bowl, lake or ocean. These surfaces are called “Level 
Surfaces”2.  Mean sea level is one particular surface of constant W.  This particular surface can be 
extended over land.  This particular level surface is called the geoid.  
 
To this point, the earth has been idealized.  But the real earth has oceans, mountains and other density 
variations.  These variations are small, but cause the real gravity values to differ from the simple 
ellipsoid model.  In the ellipsoid model, the geoid is an ellipsoid.  In the real world the geoid has bumps.  
Now we will turn to the effects of the inhomogenates of the real world. The largest effects will be on 
heights.  
 
The form of the surfaces of W must be measured; they cannot be computed from a few constants and a 
model.  They depend on the real world mass variations, which varies on many distance scales.   
Computing the distance from the geoid to the center of the earth is not possible without large numbers of 
real world measurements. The ellipsoid is defined mathematically with respect to the center of the earth 
and its radius is easily computed. Knowing the distance between the ellipsoid and geoid therefore would 
define the geoid.  The form of the geoid over large distances was not well known until satellites were 
launched.    
 
Starting with a "stake in the sand" that defines mean sea level at the shore, the heights of the land can be 
measured. With classical survey techniques, this is done with a series of measurements made from point 
to point.   
 
These heights measured by classical methods are measured from the geoid.  This happens because of the 
way heights are measured.  Transits (telescopes on a tripod) are used, with angles measured with respect 
to the local vertical.  The local up vector measured with a plumb bob or spirit level is the 
perpendicular to the real geoid. 
 

                                                             
2 Level Surfaces are the three-dimensional analogue of contours in two dimensions.  In one dimension if you find the 
locations where the function has a particular value, you get a set of points.  If you have a function of two dimensions, such as 
height as a function of latitude and longitude, the set of points of a particular value is a line. This is one of the contours.  If 
you have a function of latitude, longitude and height the set of points of a particular value is a surface.  Picking one potential 
defines a surface. One particular value defines the geoid. 
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As the transit is moved from place to place, the local vertical will follow the hills and valleys of W.  
Therefore the geoid is the reference surface for classical height measurements.  As one chief of the US 
National Geodetic Survey once said, “we are in the position of knowing heights very accurately with 
respect to a surface we know poorly”. 
 

 
 

Heights determined in this manor are called orthometric heights or mean sea level (msl) heights. 
(Orthometric and msl height are slightly different, but the two terms are commonly used to mean the 
same thing.) 
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Heights determined in this manor are called orthometric heights or mean sea level (msl) heights. 
Except in geodetic science literature, where you see msl height, it usually means orthometric height. 
 
Technically orthometric and msl height are slightly different. Ocean currents and other effects slightly 
modify the real surface height of the sea.  All the difference between real msl and orthometric heights 
can be classified as “oceanography”. 
 
 Heights measured from the ellipsoid are called ellipsoidal heights or geodetic heights.  Satellite 
systems measure ellipsoidal heights. This is not what we see on maps or in databases. These contain 
orthometric height.  Because satellite based positioning is now very important, there is a need for a good 
measurement of the geoid location.   This is done by measuring the vertical distance between the 
ellipsoid and the real world geoid as a function of location. This difference is called undulation of the 
vertical or separation of the geoid. The symbol N is used for the undulation.  
 
 

 

 
 
While the symbols h and H are commonly used for the two heights, there is no standard for which means 
orthometric or ellipsoidal.  Here we will use the DoD standard, 
 
  h         for ellipsoidal, and 
  H        for orthometric height. 
 
 
Note that in all cases the undulation, N is the orthometric minus the ellipsoidal heights. It is the distance 
from the ellipsoid to the geoid. 
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Thus 

hHN

NHh

−=
+=

, 

 
where the values are taken at the same point.  N is a function of location.  Finding N as a function of 
latitude and longitude is how we determine the geoid. 
 
 

 
 
 
The above figure gives a worldwide view of the geoid surface.  The values range from about -100 m to + 
100 m.  World wide ellipsoids are chosen so that the average undulation is zero over the world.  This 
means that there are as many places with the geoid above the ellipsoid as there are with the geoid below 
the ellipsoid.  There are many small area variations in the geoid that do not show up in this figure. 
 
Because orthometric heights (msl) were the only ones historically measurable,  they are the heights 
shown on maps and in databases.  All heights on maps are orthometric.  However position 
measurements made using satellite systems, such as GPS, are inherently done in an earth centered, earth 
fixed Cartesian X-Y-Z system.  These can easily be converted to latitude, longitude, and ellipsoidal 
height. (Also called geodetic height).  The geoid undulation, N, is needed to convert these to map type 
(orthometric or msl) heights.  This value is only know at the meter level in most places.   
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V. Geoid and Topography 
 
 The geoid has variations, or components, at many spatial scales.  At long lengths it feels the 
influences of most of the earth and its variations in density.  However on a short scale, small variations 
are dominated by local effects such as near by mountains etc. 
 

 
 
This is illustrated in the above figure.  The geoid seems to follow the mountain range up and down.  This 
can be seen from the condition that the geoid is perpendicular to the local gravity vector.  The absolute 
value of the geoid level can vary a lot because it is influenced by mass variations over a very long range, 
but the small bumps look like local topography - at least on the 100 - 1000 km range. 
 
 


