Summary of Vector Properties

Basics Quantities - Scalars and Vectors
There are quantities, such as velocity, that have both magnitude and direction. These are vectors. A quantity with only magnitude is a scalar.

Nomenclature
$\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{C}}, \overrightarrow{\mathrm{D}} \quad$ will be vectors
$|\vec{A}|$
$\hat{\mathrm{e}}_{\mathrm{x}}, \hat{\mathrm{e}}_{\mathrm{y}}, \hat{\mathrm{e}}_{\mathrm{z}} \quad$ will be a set of orthogonal unit vectors along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
(Some authors use $\mathbf{i , j}, \mathbf{k}$ for these unit vectors.)
$\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}} \quad$ are scalars that are the components of the vector $\overrightarrow{\mathrm{A}}$ $\mathrm{s} \quad$ is a scalar

Component Notation

$$
\begin{aligned}
\overrightarrow{\mathrm{A}} & =\mathrm{A}_{x} \hat{e}_{x}+\mathrm{A}_{\mathrm{y}} \hat{e}_{y}+\mathrm{A}_{\mathrm{z}} \hat{\mathrm{e}}_{\mathrm{z}} \\
& =\left(\mathrm{A}_{\mathrm{x}}, \mathrm{~A}_{\mathrm{y}}, \mathrm{~A}_{\mathrm{z}}\right)
\end{aligned}
$$

Scalar Multiplication

$$
\begin{aligned}
& s \vec{A}=s\left(A_{x}, A_{y}, A_{z}\right)=\left(s A_{x}, s A_{y}, s A_{z}\right) \\
& \begin{aligned}
s(\vec{A}+\vec{B}) & =s \vec{A}+s \vec{B} \\
& =\left(s A_{x}+s B_{x}, s A_{y}+s B_{y}, s A_{z}+s B_{z}\right)
\end{aligned}
\end{aligned}
$$

Addition

$$
\begin{aligned}
\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}} & =\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{A}} \\
& =\left(\mathrm{A}_{\mathrm{x}}+\mathrm{B}_{\mathrm{x}}, \mathrm{~A}_{\mathrm{y}}+\mathrm{B}_{y}, \mathrm{~A}_{z}+\mathrm{B}_{z}\right)
\end{aligned}
$$

Dot Product or Inner Product
$\vec{A} \bullet \vec{B}$ is a scalar.
$\overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \cos \theta$
$=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Where θ is the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$. (Either angle can be used.)
$\overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{B}} \bullet \overrightarrow{\mathrm{A}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{A}} \bullet(\overrightarrow{\mathrm{~B}}+\overrightarrow{\mathrm{C}})=\overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{~B}}+\overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{C}}=(\overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{C}}) \bullet \overrightarrow{\mathrm{A}} \\
& \mathrm{~s}(\overrightarrow{\mathrm{~A}} \bullet \overrightarrow{\mathrm{~B}})=(\mathrm{s} \overrightarrow{\mathrm{~A}}) \bullet \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}} \bullet(\mathrm{~s} \overrightarrow{\mathrm{~B}})
\end{aligned}
$$

Magnitude or Length

$$
\begin{aligned}
|\overrightarrow{\mathrm{A}}| & =\sqrt{\overrightarrow{\mathrm{A}} \bullet \overrightarrow{\mathrm{~A}}} \\
& =\sqrt{\mathrm{A}_{\mathrm{x}}^{2}+\mathrm{A}_{\mathrm{y}}^{2}+\mathrm{A}_{\mathrm{z}}^{2}}
\end{aligned}
$$

Cross Product or Outer Product
$\vec{D}=\vec{A} \times \vec{B}$ is a vector (pseudo-vector). It is perpendicular to both \vec{A} and \vec{B}
$0=\vec{D} \bullet \overrightarrow{\mathrm{~A}}=\overrightarrow{\mathrm{D}} \bullet \overrightarrow{\mathrm{B}}$
$|\overrightarrow{\mathrm{D}}|=|\mathrm{A}||\mathrm{B}| \sin \theta$
The direction of \vec{D} is perpendicular to \vec{A} and \vec{B}, in the direction of a right hand screw advance when $\overrightarrow{\mathrm{A}}$ is rotated into $\overrightarrow{\mathrm{B}}$. (Right hand rule.)

The cross product is not commutative,

$$
\begin{aligned}
\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} & =-\overrightarrow{\mathrm{B}} \times \overrightarrow{\mathrm{A}} \\
\vec{D} & =\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} \\
& =\left(\mathrm{A}_{y} B_{z}-A_{z} B_{y}, \quad A_{y} B_{z}-A_{z} B_{y}, \quad A_{y} B_{z}-A_{z} B_{y}\right)
\end{aligned}
$$

Note the cyclic nature of the multiplications in component notation.
Formally, manipulating symbols, we can represent the cross product as a determinate.

$$
\begin{aligned}
\vec{D} & =\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}} \\
& =\operatorname{det}\left|\begin{array}{lll}
\hat{\mathrm{e}}_{\mathrm{x}} & \hat{\mathrm{e}}_{\mathrm{y}} & \hat{\mathrm{e}}_{\mathrm{z}} \\
\mathrm{~A}_{\mathrm{x}} & \mathrm{~A}_{\mathrm{y}} & \mathrm{~A}_{z} \\
\mathrm{~B}_{\mathrm{x}} & \mathrm{~B}_{\mathrm{y}} & \mathrm{~B}_{\mathrm{z}}
\end{array}\right|
\end{aligned}
$$

Orthogonal Unit (Orthonormal) Vectors
From the properties of the inner product one has:

$$
\begin{aligned}
& \hat{\mathrm{e}}_{\mathrm{x}} \bullet \hat{\mathrm{e}}_{\mathrm{x}}=\hat{\mathrm{e}}_{\mathrm{y}} \bullet \hat{\mathrm{e}}_{\mathrm{y}}=\hat{\mathrm{e}}_{\mathrm{z}} \bullet \hat{\mathrm{e}}_{\mathrm{z}}=1 \\
& \hat{\mathrm{e}}_{\mathrm{x}} \bullet \hat{\mathrm{e}}_{\mathrm{y}}=\hat{\mathrm{e}}_{\mathrm{x}} \bullet \hat{\mathrm{e}}_{\mathrm{z}}=\hat{\mathrm{e}}_{\mathrm{y}} \bullet \hat{\mathrm{e}}_{\mathrm{z}}=0
\end{aligned}
$$

The magnitude of unit vectors cross products are:
$\left|\hat{e}_{x} \times \hat{e}_{y}\right|=\left|\hat{e}_{y} \times \hat{e}_{z}\right|=\left|\hat{e}_{z} \times \hat{e}_{x}\right|=1$
$\left|\hat{e}_{x} \times \hat{e}_{x}\right|=\left|\hat{e}_{y} \times \hat{e}_{y}\right|=\left|\hat{e}_{z} \times \hat{e}_{z}\right|=0$
The cross products are:

$$
\begin{aligned}
& \hat{\mathrm{e}}_{\mathrm{x}} \times \hat{\mathrm{e}}_{\mathrm{y}}=1=-\left(\hat{\mathrm{e}}_{\mathrm{y}} \times \hat{\mathrm{e}}_{\mathrm{x}}\right) \\
& \hat{\mathrm{e}}_{\mathrm{y}} \times \hat{\mathrm{e}}_{\mathrm{z}}=1=-\left(\hat{\mathrm{e}}_{\mathrm{z}} \times \hat{\mathrm{e}}_{\mathrm{y}}\right) \\
& \hat{\mathrm{e}}_{\mathrm{z}} \times \hat{\mathrm{e}}_{\mathrm{x}}=1=-\left(\hat{\mathrm{e}}_{\mathrm{x}} \times \hat{\mathrm{e}}_{\mathrm{z}}\right)
\end{aligned}
$$

