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I. Introduction 
 
 This note addresses some of the basic concepts of physics with emphasis on items 
needed to understand the fundamentals of geodesy.  There are entire books on basic / 
elementary physics, and these should be consulted for more information. It is assumed 
that the reader is familiar with vectors.  There is a companion note on vectors. 
 
 
II. The Big Ideas of Physics 
 
 There are 3 major ideas that physics uses that are not common in everyday life: 
 
 1. Scalars and Vectors 
 

Most quantities are scalars (mass, density) or vectors (position, velocity, 
force). Vectors are the new, important item. Vectors have a magnitude and 
direction. It takes one number to specify a scalar.  It takes 3 numbers to 
specify a vector. 

 
 2. Conserved Quantities 
 

There are a few things that are conserved - they do not change with time in 
a closed (isolated) system. Mass, total energy, momentum, and angular 
momentum are a few of these. 

 
 3. Rates of Change 
 

Things are often related to each other through rates of change.  This brings 
in the calculus.  Force is related to the rate of change of velocity with 
respect to time (second derivative of position with respect to time) - that is 
acceleration. This is Newton's second law.  Force is also related to the rate 
of change of potential energy with respect to position.  

 
 There are several other topics that are often covered in an elementary physics text 
that will not be discussed here.  These include waves (water wave, light waves etc.) and 
the properties of large groups of items - temperature, heat energy etc. Waves are related 
to oscillations.  Oscillations are very common in nature because we are often operating 
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near an equilibrium (balanced forces) condition.  Advanced physics covers many other 
topics such as relativity and quantum mechanics. 
 
III. Newton's Laws of Motion 
 
 Isaac Newton published his three laws of motion in 1687.  These relate the motion 
of an object to the forces on it.  They do not address the origin of the forces. They just 
give a prescription for computing motion when the forces are known. 
 
 Newton's First Law 
 

In the absence of forces, an object maintains its velocity.  If at rest, it remains at 
rest. If in motion, it remains in motion in the same direction and with the same 
speed. 

 
 Newton's Second Law 
 

The force on a body is proportional to the mass times the acceleration.  

amF
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=  
Here the acceleration a

r
, is the time rate of change of velocity, v

r
.   The velocity is 

in turn the time rate of change of position, x
r

. These values have little arrows over 
them to indicate that they are vectors. A better way to express this equation is 
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which is the way the equation is normally used. The mass is the constant that 
relates a given force to the rate of change of velocity that is produced.  

 
 Newton's Third Law 
 

For every force there is an equal and opposite force.  This says that if Item-A acts 

on Item-B with force AF
r

, then Item-B acts on Item-A with a force AB FF
rr

−=  .  
The total forces in an isolated or closed system are zero.  (Sometimes you have to 
include a lot of things to get all the items that form the closed system.) 
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IV Conserved Quantities 
 
 There are many things that are conserved in physics.  The most important one are 
total energy and momentum.  For geodesy and satellite orbits the angular momentum also 
is important. 
 
 1. Total Energy 
 
 Energy is a common quantity that we use and discuss in everyday life, but it is 
also a subtle quantity in physics.  It can exist in many forms.  The most common form 
discussed in elementary physics is Kinetic Energy, or energy of motion. It is given by: 
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(There area several different symbols used for kinetic energy, I use T here.)  Notice that 
kinetic energy is a scalar.  Energy, in all its many forms, is a scalar.   
 
 A second form of energy introduced in elementary physics is potential energy, V.  
The most common example is the gravitational potential energy.  We increase the 
potential energy of an item if we raise it up. (Move it further from the center of the earth.) 
Near the earth's surface we can say that raising a mass m from height h1 to height h2 
increases the gravitational potential energy by: 
 

)hh(mgV 12 −=∆  . 
 
Again energy is a scalar.  And also note that only the difference in potential energies is 
computed.  It is very common to have no absolute reference for potential energies. 
Differences are what are important. The force of gravity on an object is mg.  Notice that  
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showing the relationship between the force of gravity and the potential change with 
respect to position.  This concept is valid in general when the second form involving the 

limit is used. (The spatial gradient operator in more mathematical terms, VF ∇−=
rr

). 
This makes the object want to move to locations of lower potential energy.  
 
 In raising the object, we had to exert a force.  The force has a value mg, the 'force 
of gravity' the earth exerts on the object.  We have done work on the object in the 



 4 

technical sense.  If we release at height h2, the object falls.  When it reaches the height h1 
it will have lost all the potential energy we added in doing the work raising it. This will 
show up as kinetic energy.  Equating the two, we can find the velocity there: 
 

)hh(mg)h(mv
2
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2
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This is just one example of the utility of a conservation law.  Notice that I have written 
the velocity as function of height, v(h).  Thus we can use this to find a formula for the 
velocity at different heights.  We still do not know the time history of the object.  For that 
we need to use Newton's second law: 
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which tells us that the acceleration is constant, is directed downward, and is equal to the 
acceleration of gravity.  (An important very subtle issue here is in equating the resistance 
to motion mass - called inertial mass - to the gravitational mass. This is true to a very 
high degree of accuracy but this wasn't validated by measurement until about 1900.) 
 
**  Note Well 
 

In geodesy the gravity potential is not the same as physic's potential 
energy.  

 
a.   It has the opposite sign.  This removes the negative sign 
      from the gradient equation. 
b.   It is potential per unit mass. 
c.   Rotational effects are included.  

 
There are many other forms of energy.  Heat energy is one common place "lost energy" 
in a system goes.  The conservation of energy wasn't proved until the experiments of 
Joule, Helmholtz  and others about heat energy. This was published only in 1847.   
 
 
 2. Momentum or Linear Momentum 
 
 The momentum of an object is given as 
 

vmp
rr

= . 
 
This  is a vector.  The sum of the momentum of all the objects in a closed system is 
constant.  This is a direct consequence of Newton's third law.  Conservation of 
momentum is commonly used in solving for the dynamics in collisions.   
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 3. Angular Momentum 
 
 Angular momentum is related to rotation. It is a vector and commonly denoted as 

L
r

 . It needs to have a origin of a coordinate system defined to be computed.  So it might 
be named angular momentum with respect to a particular origin, such as the center of the 

earth. While the values of L
r

 change with choice of origin, the conservation law holds in 
all systems.  You just have to use a consistent set of values. For rotating systems, the 
center of rotation is usually used as the origin of the coordinates system. 
 
 Angular momentum is defined as using the vector cross product: 
 

vrmL
rrr

×=  
 
where r

r
 is the vector from the origin to the object, v

r
 is the velocity and m is the mass.  It 

is a vector perpendicular to the plane formed by  r
r

 and v
r

 in the direction of a right hand 
screw rotating r into v.  If r

r
 is parallel v

r
 then the angular momentum is zero.  The 

magnitude of the angular momentum is maximum when r
r

 is perpendicular to v
r

, as it is 
in circular motion. 
 
 
V. Rates of Change (Derivatives) and Integrals 
 
 There are many places in physics where the rates of change occur.  This is the 
derivative of calculus.  It is not hard to understand. Measure the speed of a car by placing 
two sensor cables across the road as was done before the invention of the radar gun.  The 
time difference in the pulses as the car crosses the cables is the separation, s, divided by 
the velocity averaged over the separation of the two sensor cables, 
 

avgv
s

t =∆ , 

 
so the average velocity is s/ t∆ .  This is an average velocity.  As the cables come closer, 
the measurement becomes closer to the instantaneous velocity of the car. This limit is the 
derivative.   
 
 Plot the graph of a function as shown below.  The cord, the line between two 
points, has a slope that is the like the average velocity.  As the length between the contact 
points of the cord get shorter, the cord becomes the tangent line to the curve.  There will 
be a separate tangent line at each point.  The slope of the tangent line is the derivative of 
the curve.  This exists at each point. 
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 Often we need to do the inverse of taking a derivative.  This is done with the 
integral of the curve.   The fundamental theory of calculus says that "the integral is the 
inverse operation of the derivative". 
 

dx
dx

df
)x(f ∫=  

 
 The integral is the area "under" the curve.  In mathematical language, the integral 
is the limit of the areas of a series of boxes of width ∆ x and with height being f(x) at the 
midpoint.   
 

∑ ∆=
i

i x)x(fS  

 
The integral is the limit of this sum where the width of the boxes goes to zero and the 
number of boxes goes to infinity.  The area under the curve is thus the signed sum of the 
area, where the area below the axis is negative and that above is positive. 
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 There are two different types of integrals.  The integral above is called a definite 
integral.  It is between two specific x values.  You can also take the integral using a 
variable for the upper limit.  In this case you get a function, not a number.  
 
The further details of the calculus can be found in many textbooks.  Derivatives are 
usually easy to compute.  There are a series of runs that can be applied.  The same is true 
of integral, but they can be harder to find in a table.  You sometimes have to manipulate 
them to get them into a standard form. 
 
 
 
VI The Gradient 
 
 In physics, and in particular in considering the gravity field of the earth, a multi-
dimensional version of the derivative is used.  This is called the gradient operator and is 

usually written as  ∇
r

.  It acts like a vector.  A brief overview of this operator is given 
here along with the few important properties for the geodesy application.  For more 
details, look at  mathematics, physics or engineering text books. 
 
 Mathematically the gradient can be described in several ways.  One of the easiest 
is in terms of Cartesian components. (See the technical note on vectors for details on the 
Cartesian representation of a vector.)  
 
  If a function depends on two or more variables, such as the position values of 
latitude and longitude, then you can take the derivative with respect to each of these 
independent variables assuming that the other variable is constant.  This is called the 
partial derivative.  If f = f(x, y) then the partial derivative with respect to x is written as 
 



 8 

x

f

x

)y,x(f

∂
∂

=
∂

∂
, 

 
and the partial with respect to the second independent variable, y, as 
 

y

f

∂
∂

 . 

 
 Consider  the following diagram of the height in some gentle rolling prairie. 
 

 
 
The height is our function f.  It depends on two horizontal values called X and Y here.    
For these fixed values we can plot graphs in 1 dimension. 
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Below is a contour plot of the height.   This shows lines of constant height or level. They 
are also levels of equal gravitational potential energy.  The cuts for the  four lines plotted 
are marked with dotted lines. 
 
 

 
 
 The derivatives (slope of the tangent lines) of the height along the cuts are partial 
derivatives of the two dimensional figure.  There is a derivative at each value of X in the 
left figure.  Notice that the Y=0 cut is only a function of X.  Now we could have just as 
easily taken the Y cut at a value of Y=3 or Y=5, which are the also shown. .  Those 
curves are  different, the derivative (partial derivative of the 2-dimensional function) is 
different from the Y=0 cut.  So a partial derivative is  labeled with the values of both the 
independent variables.  The partials are functions over the same domain as the original 
function.  And there are two of them in the two dimensional case. For the three dimension 
case there are three partial derivatives. 
 
 These two different partials are combined to form a vector, the gradient.  The 
gradient of f, is given by: 
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where  xê  is the unit vector in the x direction and yê  is the unit vector in the y 

direction. The second line is just another notation for the same vector.  We see that the 
gradient operator takes a scalar function and produces a vector. 
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 The meaning of the gradient is simple: it is a vector giving the slope of the two 
dimensional (or three dimensional ) surface.  Here in two dimensions it is fairly easy to 
interpret. It points in the direction of the maximum increase of the function.  The length 
of the vector is equal to the slope in that direction. 
 
Now below is the same contour plot, with small vectors added for the gradient.  At each 
point there is a gradient.  We see several things. 
 

 1.  The magnitude of the gradient is related to the slope of the surface.  Where the 
slope is large, the contour lines are close together. There the gradient is largest.   

 
2.   Note that the gradients are always perpendicular to the contour lines.  This is a 
key feature for geodesy.  

 

 
 
 The gradient point uphill in the direction of maximum slope.  This is a gradient of 
height, but that is also a gradient of gravitational potential energy.  Because the force is 
given by 
 

VF ∇−=
rr

 
 
with a negative sign, the force is downhill.  Where the gradient is high, it takes more 
energy to climb the hill.  Or water will flow downhill faster.  Where the gradient is zero 
there is no force in the X-Y plane.  


