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MAP PROJECTIONS 

A WORKING MANUAL 

By JOHN P. SNYDER 

ABSTRACT 

   After decades of using only one map projection, the Polyconic, for its mapping program, the U.S. Geological Survey 
(USGS) now uses several of the more common projections for its published maps. For larger scale maps, including 
topographic quadrangles and the State Base Map Series, conformal projections such as the Transverse Mercator and the 
Lambert Conformal Conic are used. Equal-area and equidistant projections appear in the National Atlas. Other projections, 
such as the Miller Cylindrical and the Van der Grinten, are chosen occasionally for convenience, sometimes making use of 
existing base maps prepared by others. Some projections treat the Earth only as a sphere, others as either ellipsoid or sphere. 

     The USGS has also conceived and designed several new projections, including the Space Oblique Mercator, the first map 
projection designed to permit mapping of the Earth continuously from a satellite with low distortion. The mapping of 
extraterrestrial bodies has resulted in the use of standard projections in completely new settings. Several other projections 
which have not been used by The USGS are frequently of interest to the cartographic public. 
     With increased computerization, it is important to realize that rectangular coordinates for all these projections may be 
mathematically calculated with formulas which would have seemed too complicated in the past, but which now may be 
programmed routinely, especially if aided by numerical examples. A discussion of appearance, usage, and history is given 
together with both forward and inverse equations for each projection involved. 

INTRODUCTION 

The subject of map projections, either generally or specifically, has been discussed in thousands of 
papers and books dating at least from the time of the Greek astronomer Claudius Ptolemy (about A.D. 
150), and projections are known to have been in use some three centuries earlier. Most of the widely 
used projections date from the 16th to 19th centuries, but scores of variations have been developed 
during the 20th century. In recent years, there have been several new publications of widely 
varying depth and quality devoted exclusively to the subject. In 1979, the USGS published Maps, 
for America, a book-length description of its maps (Thompson, 1979). The USGS has also 
published bulletins describing from one to three projections (Birdseye, 1929; Newton, 1985). 

 
In spite of all this literature, there was no definitive single publication on map projections used 

by the USGS, the agency responsible for administering the National Mapping Program, until the first 
edition of Bulletin 1532 (Snyder, 1982a). The USGS had relied on map projection treatises published 
by the former Coast and Geodetic Survey (now the National Ocean Service). These publications did 
not include sufficient detail for all the major projections now used by the USGS and others. A 
widely used and outstanding treatise of the Coast and Geodetic Survey (Deetz and Adams, 1934), 
last revised in 1945, only touches upon the Transverse Mercator, now a commonly used projection for 
preparing maps. Other projections such as the Bipolar Oblique Conic Conformal, the Miller 
Cylindrical, and the Van der Grinten, were just being developed, or, if older, were seldom used in 
1945. Deetz and Adams predated the extensive use of the computer and pocket calculator, and, 
instead, offered extensive tables for plotting projections with specific parameters. 

 
Another classic treatise from the Coast and Geodetic Survey was written by Thomas 

(1952) and is exclusively devoted to the five major conformal projections. It emphasizes 
derivations with a summary of formulas and of the history of these projections, and is directed 
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toward the skilled technical user. Omitted are tables, graticules, or numerical examples. 
 
In USGS Bulletin 1532 the author undertook to describe each projection which has been used 

by the USGS sufficiently to permit the skilled, mathematically oriented cartographer to use 
the projection in detail. The descriptions were also arranged so as to enable a lay person 
interested in the subject to learn as much as desired about the principles of these projections 
without being overwhelmed by mathematical detail. Deetz and Adams' (1934) work set an 
excellent example in this combined approach. 

 
While Bulletin 1532 was deliberately limited to map projections used by the USGS, the 

interest in the bulletin has led to expansion in the form of this professional paper, which includes 
several other map projections frequently seen in atlases and geography texts. Many tables of 
rectangular or polar coordinates have been included for conceptual purposes. For values between 
points, formulas should be used, rather than interpolation. Other tables list definitive parameters 
for use in formulas. A glossary as such is omitted, since such definitions tend to be oversimplified 
by nature. The reader is referred to the index instead to find a more complete description of 
a given term. 

 
The USGS, soon after its official inception in 1879, apparently chose the Polyconic 

projection for its mapping program. This projection is simple to construct and had been 
promoted by the Survey of the Coast, as it was then called, since Ferdinand Rudolph Hassler's 
leadership of the early 1800's. The first published USGS topographic "quadrangles," or maps 
bounded by two meridians and two parallels, did not carry a projection name, but 
identification as "Polyconic projection" was added to later editions. Tables of coordinates 
published by the USGS appeared in 1904, and the Polyconic was the only projection mentioned 
by Beaman (1928, p. 167). 

 
Mappers in the Coast and Geodetic Survey, influenced in turn by military and civilian mappers 

of Europe, established the State Plane Coordinate System in the 1930's. This system involved the 
Lambert Conformal Conic projection for States of larger east-west extension and the Transverse 
Mercator for States which were longer from north to south. In the late 1950's, the USGS began 
changing quadrangles from the Polyconic to the projection used in the State Plane 
Coordinate System for the principal State on the map. The USGS also adopted the Lambert 
for its series of State base maps. 

 
As the variety of maps issued by the USGS increased, a broad range of projections became 
important: The Polar Stereographic for the map of Antarctica, the Lambert Azimuthal Equal-
Area for maps of the Pacific Ocean, and the Albers Equal-Area Conic for the National Atlas 
(USGS, 1970) maps of the United States. Several other projections have been used for other 
maps in the National Atlas, for tectonic maps, and for grids in the panhandle of Alaska. The 
mapping of extraterrestrial bodies, such as the Moon, Mars, and Mercury, involves old 
projections in a completely new setting. Perhaps the first projection to be originated within 
the USGS is the Space Oblique Mercator for continuous mapping using imagery from 
artificial satellites. 

 
It is hoped that this expanded study will assist readers to understand better not only the 

basis for maps issued by the USGS, but also the principles and formulas for computerization, 
preparation of new maps, and transference of data between maps prepared on different 
projections. 
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MAP PROJECTIONS-GENERAL CONCEPTS 

1. CHARACTERISTICS OF MAP PROJECTIONS 
 

The general purpose of map projections and the basic problems encountered have been 
discussed often and well in various books on cartography and map projections. (Robinson, Sale, 
Morrison, and Muehrcke, 1984; Steers, 1970; and Greenhood, 1964, are among later editions of 
earlier standard references.) Every map user and maker should have a basic understanding of 
projections, no matter how much computers seem to have automated the operations. The 
concepts will be concisely described here, although there are some interpretations and formulas 
that appear to be unique. 

 
For almost 500 years, it has been conclusively established that the Earth is essentially a 

sphere, although a number of intellectuals nearly 2,000 years earlier were convinced of this. 
Even to the scholars who considered the Earth flat, the skies appeared hemispherical, 
however. It was established at an early date that attempts to prepare a flat map of a surface 
curving in all directions leads to distortion of one form or another. 

 
A map projection is a systematic representation of all or part of the surface of a round body, 

especially the Earth, on a plane. This usually includes lines delineating meridians and parallels, 
as required by some definitions of a map projection, but it may not, depending on the purpose 
of the map. A projection is required in any case. Since this cannot be done without distortion, 
the cartographer must choose the characteristic which is to be shown accurately at the expense of 
others, or a compromise of several characteristics. If the map covers a continent or the Earth, 
distortion will be visually apparent. If the region is the size of a small town, distortion may 
be barely measurable using many projections, but it can still be serious with other projections. 
There is literally an infinite number of map projections that can be devised, and several 
hundred have been published, most of which are rarely used novelties. Most projections may 
be infinitely varied by choosing different points on the Earth as the center or as a starting 
point. 

 
It cannot be said that there is one "best" projection for mapping. It is even risky to claim 

that one has found the "best" projection for a given application, unless the parameters chosen 
are artificially constricting. A carefully constructed globe is not the best map for most applications 
because its scale is by necessity too small. A globe is awkward to use in general, and a 
straightedge cannot be satisfactorily used on one for measurement of distance. 

 
The details of projections discussed in this book are based on perfect plotting onto 

completely stable media. In practice, of course, this cannot be achieved. The cartographer may 
have made small errors, especially in hand-drawn maps, but a more serious problem results from 
the fact that maps are commonly plotted and printed on paper, which is dimensionally unstable. 
Typical map paper can expand over 1 percent with a 60 percent increase in atmospheric 
humidity, and the expansion coefficient varies considerably in different directions on the same 
sheet. This is much greater than the variation between common projections on large scale 
quadrangles, for example. The use of stable plastic bases for maps is recommended for precision 
work, but this is not always feasible, and source maps may be available only on paper, frequently 
folded as well. On large-scale maps, such as topographic quadrangles, measurement on paper 
maps is facilitated with rectangular grid overprints, which expand with the paper. Grids are 
discussed later in this book. 
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The characteristics normally considered in choosing a map projection are as follows: 

1. Area.-Many map projections are designed to be equal-area, so that a coin of any 
size, for example, on one part of the map covers exactly the same area of the actual Earth 
as the same coin on any other part of the map. Shapes, angles, and scale must be distorted 
on most parts of such a map, but there are usually some parts of an equal-area map which 
are designed to retain these characteristics correctly, or very nearly so. Less common 
terms used for equal-area projections are equivalent, homolographic, or homalographic 
(from the Greek homalos or homos ("same") and graphos ("write")); authalic (from the 
Greek autos ("same") and ailos ("area")), and equiareal. 

 
2.  Shape .-Many of the most common and most important projections are conformal 

or orthomorphic (from the Greek orthos or "straight" and morphe or "shape"), in that 
normally the relative local angles about every point on the map are shown correctly. (On 
a conformal map of the entire Earth there are usually one or more "singular" points at which 
local angles are still distorted.) Although a large area must still be shown distorted in shape, 
its small features are shaped essentially correctly. Conformality applies on a point or 
infinitesimal basis, whereas an equal-area map projection shows areas correctly on a finite, 
in fact mapwide basis. An important result of conformality is that the local scale in every 
direction around any one point is constant. Because local angles are correct, meridians 
intersect parallels at right (90o) angles on a conformal projection, just as they do on the Earth. 
Areas are generally enlarged or reduced throughout the map, but they are correct along certain 
lines, depending on the projection. Nearly all large-scale maps of the Geological Survey and 
other mapping agencies throughout the world are now prepared on a conformal projection. 
No map can be both equal-area and conformal. 

 
While some have used the term aphylactic for all projections which are neither equal-

area nor conformal (Lee, 1944), other terms have commonly been used to describe 
special characteristics: 

 
3.  Scale.-No  map projection shows scale correctly throughout the map, but there are 

usually one or more lines on the map along which the scale remains true. By choosing the 
locations of these lines properly, the scale errors elsewhere may be minimized, although 
some errors may still be large, depending on the size of the area being mapped and the 
projection. Some projections show true scale between one or two points and every other 
point on the map, or along every meridian. They are called equidistant projections. 

 
4. Direction.-While conformal maps give the relative local directions correctly at any 

given point, there is one frequently used group of map projections, called azimuthal (or 
zenithal), on which the directions or azimuths of all points on the map are shown correctly 
with respect to the center. One of these projections is also equal-area, another is conformal, 
and another is equidistant. There are also projections on which directions from two points 
are correct, or on which directions from all points to one or two selected points are correct, 
but these are rarely used. 

 
5. Special characteristics.-Several map projections provide special characteristics that no 

other projection provides. On the Mercator projection, all rhumb lines, or lines of 
constant direction, are shown as straight lines. On the Gnomonic projection, all great circle 
paths-the shortest routes between points on a sphere shown as straight lines. On the 
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Stereographic, all small circles, as well as great circles, are shown as circles on the 
map. Some newer projections are specially designed for satellite mapping. Less useful 
but mathematically intriguing projections have been designed to fit the sphere 
conformally into a square, an ellipse, a triangle, or some other geometric figure. 

 
6. Method of construction.-In the clays before ready access to computers and plotters, 

ease of construction was of greater importance. With the advent of computers and even 
pocket calculators, very complicated formulas can be handled almost as routinely as simple 
projections in the past. 

While the above six characteristics should ordinarily be considered in choosing a map 
projection, they are not so obvious in recognizing a projection. In fact, if the region 
shown on a map is not much larger than the United States, for example, even a trained eve 
cannot often distinguish whether the map is equal-area or conformal. It is necessary to 
make measurements to detect small differences in spacing or location of meridians and 
parallels, or to make other tests. The type of construction of the map projection is more 
easily recognized with experience, if the projection falls into one of the common 
categories. 

There are three types of developable1 surfaces onto which most of the map projections 
used by the USGS are at least partially geometrically projected. They are the cylinder, the 
cone, and the plane. Actually all three are variations of the cone. A cylinder is a limiting 
form of a cone with an increasingly sharp point or apex. As the cone becomes flatter, its 
limit is a plane. 

 
If a cylinder is wrapped around the globe representing the Earth (see fig. 1), so that its surface 

touches the Equator throughout its circumference, the meridians of longitude may be 
projected onto the cylinder as equidistant straight lines perpendicular to the Equator, and 
the parallels of latitude marked as lines parallel to the Equator, around the circumference 
of the cylinder and mathematically spaced for certain characteristics. For some cases, the 
parallels may also be projected geometrically from a common point onto the cylinder, but 
in the most common cases they are not perspective. When the cylinder is cut along some 
meridian and unrolled, a cylindrical projection with straight meridians and straight parallels 
results. The Mercator projection is the best-known example, and its parallels must be 
mathematically spaced. 

 
If a cone is placed over the globe, with its peak or apex along the polar axis of the Earth 

and with the surface of the cone touching the globe along some particular parallel of latitude, a 
conic (or conical) projection can be produced. This time the meridians are projected onto 
the cone as equidistant straight lines radiating from the apex, and the parallels are marked 
as lines around the circumference of the cone in planes perpendicular to the Earth's axis, 
spaced for the desired characteristics. The parallels may not be projected geometrically 
for any useful conic projections. When the cone is cut along a meridian, unrolled, and laid 
flat, the meridians remain straight radiating lines, but the parallels are now circular arcs 
centered on the apex. The angles between meridians are shown smaller than the true angles. 

 
A plane tangent to one of the Earth's poles is the basis for polar azimuthal projections. 

In this case, the group of projections is named for the function, not the plane, since all 

                                                   
1  A developable surface is one that can be transformed to a plane without distortion. 
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common tangent-plane projections of the sphere are azimuthal. The meridians are projected as 
straight lines radiating from a point, but they are spaced at their true angles instead of the 
smaller angles of the conic projections. The parallels of latitude are complete circles, 
centered on the pole. On some important azimuthal projections, such as the Stereographic 
(for the sphere), the parallels are geometrically projected from a common point of 
perspective; on others, such as the Azimuthal Equidistant, they are nonperspective. 

 
The concepts outlined above may be modified in two ways, which still provide 

cylindrical, conic, or azimuthal projections (although the azimuthal retain this property 
precisely only for the sphere). 

 
  The cylinder or cone may be secant to or cut the globe at two parallels instead of being 

tangent to just one. This conceptually provides two standard parallels; but for most conic 
projections this construction is not geometrically correct. The plane may likewise cut 
through the globe at any parallel instead of touching a pole, but this is only useful for the 
Stereographic and some other perspective projections. The axis of the cylinder or cone can have 
a direction different from that of the Earth's axis, while the plane may be tangent to a point other 
than a pole (fig.1). This type of modification leads to important oblique, transverse, and equa-
torial projections, in which most meridians and parallels are no longer straight lines or arcs of 
circles. What were standard parallels in the normal orientation now become standard lines not 
following parallels of latitude.  

Other projections resemble one or another of these categories only in some respects. There 
are numerous interesting pseudocylindrical (or "false cylindrical") projections. They are so 
called because latitude lines are straight and parallel, and meridians are equally spaced, as on 
cylindrical projections, but all meridians except the central meridian are curved instead of 
straight. The Sinusoidal is a frequently used example. Pseudoconic projections have concentric 
circular arcs for parallels, like conics, but meridians are curved; the Bonne is the only common 
example. Pseudoazimuthal projections are very rare; the polar aspect has concentric circular arcs 
for parallels, and curved meridians. The Polyconic projection is projected onto cones tangent 
to each parallel of latitude, so the meridians are curved, not straight. Still others are more 
remotely related to cylindrical, conic, or azimuthal projections, if at all. 
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FIGURE 1.-Projection of the Earth onto the three major surfaces. In a few cases, projection 
is geometric, but in most cases the projection is mathematical to achieve certain features. 
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2. LONGITUDE AND LATITUDE 

To identify the location of points on the Earth, a graticule or network of longitude and latitude 
lines has been superimposed on the surface. They are commonly referred to as meridians and 
parallels, respectively. The concept of latitudes and longitudes was originated early in 
recorded history by Greek and Egyptian scientists, especially the Greek astronomer Hipparchus 
(2nd century, B. C. ). Claudius Ptolemy further formalized the concept (Brown, 1949, p. 50, 52, 
68). 
 

PARALLELS OF LATITUDE 

Given the North and South Poles, which are approximately the ends of the axis about which the 
Earth rotates, and the Equator, an imaginary line halfway between the two poles, the parallels of 
latitude are formed by circles surrounding the Earth and in planes parallel with that of the 
Equator. If circles are drawn equally spaced along the surface of the sphere, with 90 spaces from 
the Equator to each pole, each space is called a degree of latitude. The circles are numbered from 
0° at the Equator to 90° North and South at the respective poles. Each degree is subdivided 
into 60 minutes and each minute into 60 seconds of arc. 

 
For 2,000 years, measurement of latitude on the Earth involved one of two basic 

astronomical methods. The instruments and accuracy, but not the principle, were gradually 
improved. By day, the angular height of the Sun above the horizon was measured. By night, 
the angular height of stars, and especially the current pole star, was used. With appropriate 
angular conversions and adjustments for time of day and season, the latitude was obtained.. 
The measuring instruments included devices known as the cross-staff, astrolabe, back-staff, 
quadrant, sextant, and octant, ultimately equipped with telescopes. They were supplemented 
with astronomical tables called almanacs, of increasing complication and accuracy. Finally, 
beginning in the 18th century, the use of triangulation in geodetic surveying meant that latitude on 
land could be determined with high precision by using the distance from other points of known 
latitude. Thus measurement of latitude, unlike that of longitude, was an evolutionary 
development almost throughout recorded history (Brown, 1949, p. 180-207). 
 

MERIDIANS OF LONGITUDE 

Meridians of longitude are formed with a series of imaginary lines, all intersecting at both the 
North and South Poles, and crossing each parallel of latitude at right angles, but striking the 
Equator at various points. If the Equator is equally divided into 360 parts, and a meridian passes 
through each mark, 360 degrees of longitude result. These degrees are also divided into minutes 
and seconds. While the length of a degree of latitude is always the same on a sphere, the 
lengths of degrees of longitude vary with the latitude (see fig. 2). At the Equator on the 
sphere, they are the same length as the degree of latitude, but elsewhere they are shorter. 

 
There is only one location for the Equator and poles which serve as references for counting 

degrees of latitude, but there is no natural origin from which to count degrees of longitude, since 
all meridians are identical in shape and size. It thus becomes necessary to choose arbitrarily 
one meridian as the starting point, or prime meridian. There have been many prime meridians in 
the course of history, swayed by national pride and international influence. For over 150 years, 
France officially used the meridian through Ferro, an island of the Canaries. Eighteenth century 
maps of the American colonies often show longitude from London or Philadelphia. During 
the 19th century, boundaries of new States were described with longitudes west of a meridian 
through Washington, D.C., 77°03' 02.3" west of the Greenwich (England) Prime Meridian 
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(Van Zandt, 1976, p. 3). The latter was increasingly referenced, especially on seacharts due 
to the proliferation of those of British origin. In 1884, the International Meridian Conference, 
meeting in Washington, agreed to adopt the "meridian passing through the center of the transit 
instrument at the Observatory of Greenwich as the initial meridian for longitude," resolving 
that "from this meridian longitude shall be counted in two directions up to 180 degrees, east 
longitude being plus and west longitude minus" (Brown, 1949, p. 283, 297). 

 
FIGURE 2.-Meridians and parallels on the sphere. 

 
The choice of the prime meridian is arbitrary and may be stated in simple terms. The 
accurate measurement of the difference in longitude at sea between two points, however, was 
unattainable for centuries, even with a precision sufficient for the times. When extensive 
transatlantic exploration from Europe began with the voyages of Christopher Columbus in 
1492, the inability to measure east-west distance led to numerous shipwrecks with substantial 
loss of lives and wealth. Seafaring nations beginning with Spain offered sizable rewards for 
the invention of satisfactory methods for measuring longitude. It finally became evident that a 
portable, dependable clock was needed, so that the height of the Sun or stars could be related to 
the time in order to determine longitude. The study of the pendulum by Galileo, the invention of the 
pendulum clock by Christian Huygens in 1656, and Robert Hooke's studies of the use of springs in 
watches in the 1660's provided the basic instrument, but it was not until John Harrison of 
England responded to his country's substantial reward posted in 1714 that the problem was 
solved. For five decades, Harrison devised successively more reliable versions of a marine 
chronometer, which were tested at sea and gradually accepted by the Board of Longitude in 
painstaking steps from 1765 to 1773. Final compensation required intervention by the King and 
Parliament (Brown, 1949, p. 208-240; Quill, 1966). 

 
Thus a major obstacle to accurate mapping was overcome. On land, the measurement of 

longitude lagged behind that of latitude until the development of the clock and the spread of 
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geodetic triangulation in the 18th century made accuracy a reality. Electronic means of measuring 
distance and angles in the mid- to late-20th century have redefined the meaning of accuracy by 
orders of magnitude. 

 
CONVENTIONS IN PLOTTING 

When constructing meridians on a map projection, the central meridian, usually a straight 
line, is frequently taken to be a starting point or 0° longitude for calculation purposes. When 
the map is completed with labels, the meridians are marked with respect to the Greenwich Prime 
Meridian. The formulas in this book are arranged so that Greenwich longitude may be used 
directly. All formulas herein use the convention of positive east longitude and north latitude, 
and negative west longitude and south latitude. Some published tables and formulas elsewhere 
use positive west longitude, so the reader is urged to use caution in comparing values. 
 

GRIDS 

Because calculations relating latitude and longitude to positions of points on a given map can 
become quite involved, rectangular grids have been developed for the use of surveyors. In this 
way, each point may be designated merely by its distance from two perpendicular axes on the 
flat map. The Y axis normally coincides with a chosen central meridian, y increasing north. The X 
axis is perpendicular to the Y axis at a latitude of origin on the central meridian, with x 
increasing east. Frequently x and y coordinates are called "eastings" and "northings," 
respectively, and to avoid negative coordinates may have "false eastings" and "false 
northings" added. 

 
The grid lines usually do not coincide with any meridians and parallels except for the central 

meridian and the Equator. Of most interest in the United States are two grid systems: The 
Universal Transverse Mercator (UTM) Grid is described on p. 57, and the State Plane Coordinate 
System (SPCS) is described on p. 51. Preceding the UTM was the World Polyconic Grid 
(WPG), used until the late 1940's and described on p. 127. 

 
Grid systems are normally divided into zones so that distortion and variation of scale within 

any one zone is held below a preset level. The type of boundaries between grid zones varies. 
Zones of the WPG and the UTM are bounded by meridians of longitude, but for the SPCS State 
and county boundaries are used. Some grid boundaries in other countries are defined by lines 
of constant grid value using a local or an adjacent grid as the basis. This adjacent grid may in turn 
be based on a different projection and a different reference ellipsoid. A common boundary for 
non-U.S. offshore grids is an ellipsoidal rhumb line, or line of constant direction on the ellipsoid 
(see p. 46); the ellipsoidal geodesic, or shortest route (see p.199) is also used. The plotting of some 
of these boundaries can become quite complicated (Clifford J. Mugnier, pers. comm., 1985). 
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3. THE DATUM AND THE EARTH AS AN ELLIPSOID 
 

For many maps, including nearly all maps in commercial atlases, it may be assumed that 
the Earth is a sphere. Actually, it is more nearly an oblate ellipsoid of revolution, also called an 
oblate spheroid. This is an ellipse rotated about its shorter axis. The flattening of the ellipse 
for the Earth is only about one part in three hundred; but it is sufficient to become a necessary 
part of calculations in plotting accurate maps at a scale of 1:100,000 or larger, and is significant 
even for 1:5,000,000-scale maps of the United States, affecting plotted shapes by up to 2/3 percent 
(see p. 27). On small-scale maps, including single-sheet world maps, the oblateness is 
negligible. Formulas for both the sphere and ellipsoid will be discussed in this book wherever 
the projection is used or is suitable in both forms. 

 
The Earth is not an exact ellipsoid, and deviations from this shape are continually evaluated. 

The geoid is the name given to the shape that the Earth would assume if it were all measured 
at mean sea level. This is an undulating surface that varies not more than about a hundred 
meters above or below a well-fitting ellipsoid, a variation far less than the ellipsoid varies 
from the sphere. It is important to remember that elevations and contour lines on the Earth are 
reported relative to the geoid, not the ellipsoid. Latitude, longitude, and all plane coordinate 
systems, on the other hand, are determined with respect to the ellipsoid. 

 
The choice of the reference ellipsoid used for various regions of the Earth has been 

influenced by the local geoid, but large-scale map projections are designed to fit the reference 
ellipsoid, not the geoid. The selection of constants defining the shape of the reference ellipsoid 
has been a major concern of geodesists since the early 18th century. Two geometric constants 
are sufficient to define the ellipsoid itself. They are normally expressed either as (1) the 
semimajor and semiminor axes (or equatorial and polar radii, respectively), (2) the semimajor 
axis and the flattening, or (3) the semimajor axis and the eccentricity. These pairs are directly 
interchangeable. In addition, recent satellite-measured reference ellipsoids are defined by the 
semimajor axis, geocentric gravitational constant, and dynamical form factor, which may be 
converted to flattening with formulas from physics (Lauf, 1983, p. 6). 

 
In the early 18th century, Isaac Newton and others concluded that the Earth should be 

slightly flattened at the poles, but the French believed the Earth to be egg-shaped as the result of 
meridian measurements within France. To settle the matter, the French Academy of Sciences, 
beginning in 1735, sent expeditions to Peru and Lapland to measure meridians at widely 
separated latitudes. This established the validity of Newton's conclusions and led to numerous 
meridian measurements in various locations, especially during the 19th and 20th centuries; between 
1799 and 1951 there were 26 determinations of dimensions of the Earth. 

 
The identity of the ellipsoid used by the United States before 1844 is uncertain, although there is 

reference to a flattening of 1/302. The Bessel ellipsoid of 1841 (see table 1) was used by the 
Coast Survey from 1844 until 1880, when the bureau adopted the 1866 evaluation by the British 
geodesist Alexander Ross Clarke using measurements of meridian arcs in western Europe, 
Russia, India, South Africa, and Peru (Shalowitz, 1964, p. 117-118; Clarke and Helmert, 
1911, p. 807-808). This resulted in an adopted equatorial radius of 6,378,206.4 m and a polar 
radius of 6,356,583.8 m, or an approximate flattening of 1/294.9787. 

 
The Clarke 1866 ellipsoid (the year should be included since Clarke is also known for ellipsoids of 
1858 and 1880) has been used for all of North America until a change which is currently 



 

13 

underway, as described below. 
 

In 1909 John Fillmore Hayford reported calculations for a reference ellipsoid from U.S. Coast 
and Geodetic Survey measurements made entirely within the United States. This was 
adopted by the International Union of Geodesy and Geophysics (IUGG) in 1924, with a 
flattening of exactly 1/297 and a semimajor axis of exactly 6,378,388 m. This is therefore 
called the International or the 

TABLE 1.-Some official ellipsoids in use throughout the world1 
Equatorial 

 Date     Radius, a 
meters 

Polar Radius 
b, meters 

Flattening 
f Use 

GRS  802 -------- 1980            6,378,137* 6,356,752.3 1/298.257 Newly adopted 

WGS  72 3------- 1972            6,378,135* 6,356,750.5 1/298.26 NASA; Dept. of Defense; 
oil companies 

Australian ----- 1965            6,378,160* 6, 356, 774.7 1/298.25* Australia 
Krasovsky ----- 1940            6,378,245* 6,356,863.0 1/298.3* Soviet Union 

Internat'l ------- 1924            6,378,388* 
Hayford -------1909  

6,356,911.9       1/297* Remainder of the 
World+ 

Clarke4---------1880            6,378,249.1 6,356,514.9 1/293.46** Most of Africa; France 

Clarke----------1866            6,378,206.4* 6,356,583.8* 1/294.98 North America; Philip 
pines 

Airy 4 --------------1830      6,377,563.4 6,356,256.9 1/299.32** Great Britain 

Bessel ----------1841            6,377,397.2 6,356,079.0 1/299.15** Central Europe; Chile; 
Indonesia 

Everest' ------1830            6,377,276.3 6,356,075.4 1/300.80** India; Burma; Pakistan; 
Afghan.; Thai 
land; etc. 

 
Values are shown to accuracy in excess significant figures, to reduce computational confusion. 
1 Maling, 1973, p. 7; Thomas, 1970, p. 84; Army, 1973, p. 4, end map; Colvocoresses, 1969. p. 33; World 
Geodetic, 1974. 
2 Geodetic Reference System. Ellipsoid derived from adopted model of Earth. WGS 84 has same dimensions 
within accuracy shown. 
3 World Geodetic System. Ellipsoid derived from adopted model of Earth. 
4 Also used in some regions with various modified constants. 
* Taken as exact values. The third number (where two are asterisked) is derived using the following relationships: 
b = a (1-f ) ; f  = 1-b/a. Where only one is asterisked (for 1972 and 1980), certain physical constants not 
shown are taken as exact, but f as shown is the adopted value. 
     ** Derived from a and b, which are rounded off as shown after conversions from lengths in feet. 
     +Other than regions listed elsewhere in column, or some smaller areas. 

Hayford ellipsoid, and is used in many parts of the world, but it was not adopted for use in 
North America, in part because of all the work already accomplished using the older datum 
and ellipsoid (Brown, 1949, p. 293; Hayford, 1909). 

 
There are over a dozen other principal ellipsoids, however, which are still used by one or more 

countries (table 1). The different dimensions do not only result from varying accuracy in 
the geodetic measurements (the measurements of locations on the Earth), but the curvature of 
the Earth's surface (geoid) is not uniform due to irregularities in the gravity field. 
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Until recently, ellipsoids were only fitted to the Earth's shape over a particular country or 

continent. The polar axis of the reference ellipsoid for such a region, therefore, normally does 
not coincide with the axis of the actual Earth, although it is assumed to be parallel. The same 
applies to the two equatorial planes. The discrepancy between centers is usually a few 
hundred meters at most. Only satellite-determined coordinate systems, such as the WGS 72 
and GRS 80 mentioned below, are considered geocentric. Ellipsoids for the latter systems 
represent the entire Earth more accurately than ellipsoids determined from ground 
measurements, but they do not generally give the "best fit" for a particular region. 

 
The reference ellipsoids used prior to those determined by satellite are related to an "initial 

point" of reference on the surface to produce a datum, the name given to a smooth 
mathematical surface that closely fits the mean sea-level surface throughout the area of 
interest. The "initial point" is assigned a latitude, longitude, elevation above the ellipsoid, and 
azimuth to some point. Once a datum is adopted, it provides the surface to which ground 
control measurements are referred. The latitude and longitude of all the control points in a 
given area are then computed relative to the adopted ellipsoid and the adopted "initial 
point." The projection equations of large-scale maps must use the same ellipsoid parameters as 
those used to define the local datum; otherwise, the projections will be inconsistent with the 
ground control. 

The first official geodetic datum in the United States was the New England Datum, adopted in 
1879. It was based on surveys in the eastern and northeastern states and referenced to the Clarke 
Spheroid of 1866, with triangulation station Principio, in Maryland, as the origin. The first 
transcontinental arc of triangulation was completed in 1899, connecting independent surveys 
along the Pacific Coast. In the intervening years, other surveys were extended to the Gulf of 
Mexico. The New England Datum was thus extended to the south and west without major 
readjustment of the surveys in the east. In 1901, this expanded network was officially designated 
the United States Standard Datum, and triangulation station Meades Ranch. in Kansas, was the 
origin. In 1913, after the geodetic organizations of Canada and Mexico formally agreed to base 
their triangulation networks on the United States network, the datum was renamed the North 
American Datum. 
 

By the mid-1920's, the problems of adjusting new surveys to fit into the existing network 
were acute. Therefore, during the 5-year period 1927-1932 all available primary data were 
adjusted into a system now known as the North American 1927 Datum."" The coordinates of 
station Meades Ranch were not changed but the revised coordinates of the network comprised the 
North American 1927 Datum (National Academy of Sciences, 1971, p. 7). 

Satellite data have provided geodesists with new measurements to define the best Earth-
fitting ellipsoid and for relating existing coordinate systems to the Earth's center of mass. U.S. 
military efforts produced the World Geodetic System 1966 and 1972 (WGS 66 and WGS 72). 
The National Geodetic Survey is planning to replace the North American 1927 Datum with a 
new datum, the North American Datum 1983 (NAD 83), which is Earth-centered based on both 
satellite and terrestrial data. The IUGG in 1980 adopted a new model of the Earth called the 
Geodetic Reference System (GRS) 80, from which is derived an ellipsoid which has been 
adopted for the new North American datum. As a result, the latitude and longitude of almost every 
point in North America will change slightly, as well as the rectangular coordinates of a given 
latitude and longitude on a map projection. The difference can reach 300 m. U.S. military 
agencies are developing a worldwide datum called WGS 84, also based on GRS 80, but 
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with slight differences. For Earth-centered datums, there is no single "origin" like Meades 
Ranch on the surface. The center of the Earth is in a sense the origin. 

 
For the mapping of other planets and natural satellites, only Mars is treated as an ellipsoid. 

Other bodies are taken as spheres (table 2), although some irregular satellites have been treated 
as triaxial ellipsoids and are "mapped" orthographically. 

 
In most map projection formulas, some form of the eccentricity e is used, rather than the 

flattening f. The relationship is as follows: 
 

e2 = 2f  -  f2,   or   f  =  1  -  (1 - e2) 1/2 

 
For the Clarke 1866, e2 is 0.006768658. For the GRS 80, e2 is 0.0066943800. 
 

TABLE 2.-Official figures for extraterrestrial mapping 

[(From Davies. et al., 1983: Davies. Private commun., 1985.) Radius of Moon chosen so that all elevations 
are positive. Radius of Mars is based on a level of 6.1 millibar atmospheric pressure: Mars has both 
positive and negative elevations.] 

Equatorial 
Body      radius a* 

(kilometers) 

Earth's Moon -----------------------------------------------------------------------------  1,738.0 
Mercury-----------------------------------------------------------------------------------  2,439.0 
Venus--------------------------------------------------------------------------------------  6,051.0 
Mars --------------------------------------------------------------------------------------  3,393.4* 

Galilean satellites of Jupiter  

Io ------------------------------------------------------------------------------------------  1,815 
Europa ------------------------------------------------------------------------------------- 1,569 
Ganymede --------------------------------------------------------------------------------- 2,631 
Callisto ------------------------------------------------------------------------------------  2,400 

Satellites of Saturn  
Mimas -------------------------------------------------------------------------------------- 198 
Enceladus ---------------------------------------------------------------------------------- 253 
Tethys-------------------------------------------------------------------------------------- 525 
Dione -------------------------------------------------------------------------------------- 560 
Rhea --------------------------------------------------------------------------------------- 765 
Titan---------------------------------------------------------------------------------------- 2,575 
Iapetus ------------------------------------------------------------------------------------- 725 

Satellites of Uranus  
Ariel -------------------------------------------------------------------------------------- 665 
Umbriel ------------------------------------------------------------------------------------ 555 
Titania-------------------------------------------------------------------------------------- 800 
Oberon ------------------------------------------------------------------------------------  815 
Miranda -----------------------------------------------------------------------------------  250 

Satellite of Neptune  
Triton -------------------------------------------------------------------------------------- 1,600 

* Above bodies are taken as spheres except for Mars, an ellipsoid with eccentricity e of 0.101929. 
Flattening, 1 - (1 – e2)1/2. Unlisted satellites are taken as triaxial ellipsoids, or mapping is not expected in 
the near future. Mimas and Enceladus have also been given ellipsoidal parameters, but not for mapping. 

 
[Omitted Text] 
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4. SCALE VARIATION AND ANGULAR DISTORTION 

 
Since no map projection maintains correct scale throughout, it is important to determine the 

extent to which it varies on a map. On a world map, qualitative distortion is evident to an eye 
familiar with maps, after noting the extent to which landmasses are improperly sized or out of 
shape, and the extent to which meridians and parallels do not intersect at right angles, or are 
not spaced uniformly along a given meridian or given parallel. On maps of countries or even of 
continents, distortion may not be evident to the eye, but it becomes apparent upon careful 
measurement and analysis. 
 

TISSOT'S INDICATRIX 
 

In 1859 and 1881, Nicolas Auguste Tissot published a classic analysis of the distortion which 
occurs on a map projection (Tissot, 1881; Adams, 1919, p. 153-163; Maling, 1973, p. 64-67). The 
intersection of any two lines on the Earth is represented on the flat map with an intersection 
at the same or a different angle. At almost every point on the Earth, there is a right angle 
intersection of two lines in some direction (not necessarily a meridian and a parallel) which are also 
shown at right angles on the map. All the other intersections at that point on the Earth will not 
intersect at the same angle on the map, unless the map is conformal, at least at that point. The 
greatest deviation from the correct angle is called w, the maximum angular deformation. For 
a conformal map, ω  is zero. (In some texts, 2ω  is used rather than ω .) 

 
Tissot showed this relationship graphically with a special ellipse of distortion called an 

indicatrix. An infinitely small circle on the Earth projects as an infinitely small, but perfect, 
ellipse on any map projection. If the projection is conformal, the ellipse is a circle, an ellipse 
of zero eccentricity. Otherwise, the ellipse has a major axis and minor axis which are directly 
related to the scale distortion and to the maximum angular deformation. 

 
In figure 3, the left-hand drawing shows a circle representing the infinitely small circular 

element, crossed by a meridian λ  and parallel φ  on the Earth. The right-hand drawing shows 
this same element as it may appear on a typical map projection. For general purposes, the map is 
assumed to be neither conformal nor equal-area. The meridian and parallel may no longer intersect 
at right angles, but there is a pair of axes which intersect at right angles on both Earth (AB and CD) 
and map (A'B' and C'D'). There is also a pair of axes that on the map (E'F' and G'H') 
intersect with the greatest angular deformation compared to the corresponding axes on 
the Earth (EF and GH, not a right angle). The latter case has the maximum angular 

deformation ω . The orientation of these axes is such that o90=µ′+µ , or, for small 
distortions, the lines fall about halfway between A'B' and C'D'. 
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                                             (A)      (B) 

FIGURE 3.-Tissot's Indicatrix. An infinitely small circle on the Earth (A) appears as an ellipse on a 
typical map (B). On a conformal map, (B) is a circle of the same or of a different size. 

The orientation is of much less interest than the size of the deformation. If a and b, the 
major and minor semi-axes of the indicatrix, are known, then 

)ba(/ba)2/sin( −−=ω  (4-1) 

If lines λ  and φ  coincide with a and b, in either order, as in cylindrical and conic 
projections, the calculation is relatively simple, using equations (4-2) through (4-6) given 
below. 

 
Scale distortion is most often calculated as the ratio of the scale along the meridian or 

along the parallel at a given point to the scale at a standard point or along a standard line, 
which is made true to scale. These ratios are called "scale factors." That along the 
meridian is called h and along the parallel, k. The term "scale error" is frequently applied 
to (h-1) and (k-1). If the meridians and parallels intersect at right angles, coinciding with a 
and b in figure 3, the scale factor in any other direction at such a point will fall between h and k. 
Angle ω  may be calculated from equation (4-1), substituting h and k in place of a and b. In 
general, however, the computation of ω  is much more complicated, but is important for 
knowing the extent of the angular distortion throughout the map. 

 
The formulas are given here to calculate h, k, and ω ;  but the formulas for h and k are 

applied specifically to all projections for which they are deemed useful as the projection 
formulas are given later. Formulas for ω  for specific projections have generally been 
omitted. 

 
Another term occasionally used in practical map projection analysis is "convergence" 

or "grid declination." This is the angle between true north and grid north (or direction 
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of the Y axis). For regular cylindrical projections this is zero, for regular conic and polar 
azimuthal projections it is a simple function of longitude, and for other projections it may be 
determined from the projection formulas by calculus from the slope of the meridian 
(dy/dx) at a given latitude. It is used primarily by surveyors for fieldwork with topographic 
maps. Convergence is not discussed further in this work. 
 

DISTORTION FOR PROJECTIONS OF THE SPHERE 
 

The formulas for distortion are simplest when applied to regular cylindrical, conic (or 
conical), and polar azimuthal projections of the sphere. On each of these types of 
projections, scale is solely a function of the latitude. 

 
Given the formulas for rectangular coordinates x and y of any cylindrical projection as 

functions solely of longitude X and latitude 4), respectively, 

λφ
=

φ
=

d

dx

cosR

1
k

d

dy

R

1
h

 (4-2), (4-3) 

 
 

Given the formulas for polar coordinates ρ  and θ  of any conic projection as functions 

solely of φ and λ , respectively, where n is the cone constant or ratio of  θ  to )( 0λ−λ , 
 

φ
ρ

=
d

d

R

1
h                         (4-4) 

φ
ρ

=
cosR

n
k    (4-5) 



 

19 

 

 
Transverse Mercator Projection 

FIGURE 4-Distortion patterns on common conformal map projections. The Transverse Mercator and 
the Stereographic are shown with reduction in scale along the central meridian or at the center of 
projection, respectively. If there is no reduction, there is a single line of true scale along the central 
meridian on the Transverse Mercator and only a point of true scale at the center of the 
Stereographic. The illustrations are conceptual rather than precise, since each base map projection 
is an identical conic. 

 
 
 
 

 
Figure 4 - Continued 
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Figure 4 - Continued 

 
[Omitted Text] 

 
 
 
Latitude Clarke 1866 ellipsoid International (Hayford) ellipsoid 

(0) 1' lat. 1' long. 1° lat. 1' long. 
90° --------------------- 111,699.4 0.0 111,700.0 0.0 
85 111,690.7 9,735.0 111,691.4 9,735.0 
80 111,665.0 19,394.4 111,665.8 19,394.5 
75 111,622.9 28,903.3 111,624.0 28,903.5 
70 111,565.9 38,188.2 111,567.4 38,188.5 
65 111,495.7 47,177.5 111,497.7 47,177.9 
60 111,414.5 55,802.2 111,417.1 55,802.8 
55 ---------------------- 111,324.8 63,996.4 111,327.9 63,997.3 
50 111,229.3 71,698.1 111,233.1 71,699.2 
45 111,130.9 78,849.2 111,135.4 78,850.5 
40 ---------------------- 111,032.7 85,396.1 111,037.8 85,397.7 
35 110,937.6 91,290.3 110,943.3 91,292.2 
30 ---------------------- 110,848.5 96,488.2 110,854.8 96,490.4 
25 110,768.0 100,951.9 110,774.9 100,954.3 
20 ---------------------  110,698.7 104,648.7 110,706.0 104,651.4 
15 ---------------------- 110,642.5 107,551.9 110,650.2 107,554.8 
10 ---------------------- 110,601.1 109,640.7 110,609.1 109,643.7 
5 ----------------------- 110,575.7 110,899.9 110,583.9 110,903.1 
0 ----------------------- 110,567.2 111,320.7 110,575.5 111,323.9 

 
[Omitted Text]
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6. CLASSIFICATION AND SELECTION OF MAP PROJECTIONS 

 

Because of the hundreds of map projections already published and infinite number which are 
theoretically possible, considerable attention has been given to classification of projections so 
that the user is not overwhelmed by the numbers and the variety. Generally, the proposed systems 
classify projections on the basis of property (equal-area, conformal, equidistant, azimuthal, and 
so forth), type of construction (cylindrical, conical, azimuthal, and so forth), or both. Lee 
(1944) proposed a combination: 

 

Conical projections 
Cylindric  
Pseudocylindric  
Conic 
Pseudoconic  
Polyconic Azimuthal 

Perspective 
Nonperspective 

Nonconical projections 
Retroazimuthal (not discussed here)  
Orthoapsidal (not discussed here)  
Miscellaneous 
 
Each of these categories was further subdivided into conformal, authalic (equal-area), and 

aphylactic (neither conformal nor authalic), but some subdivisions have no examples. This 
classification is partially used in this book, as the section headings indicate, but the headings are 
influenced by the number of projections described in each category: Pseudocylindrical 
projections are included with the "miscellaneous" group, and "space map projections" are given a 
separate section. 

 
Interest has been shown in some other forms of classification which are more suitable for 

extensive treatises. In 1962, Waldo R. Tobler provided a simple but all-inclusive proposal 
(Tobler, 1962). Tobler's classification involves eight categories, four for rectangular and four 
for polar coordinates. For the rectangular coordinates, category A includes all projections in 
which both x and y vary with both latitude φ  and longitude λ , category B includes all in which 
y varies with both  φ  and  λ  while x is only a function of λ , C includes those projections in 
which x varies with both φ  and  λ  while y varies only withφ , and D is for those in which x is 
only a function of λ  and y only of φ . There are very few published projections in category B, but 
C is usually called pseudocylindrical, D is cylindrical, and A includes nearly all the rest which 
do not fit the polar coordinate categories. 

 
Tobler's categories A to D for polar coordinates are respectively the same as those for 

rectangular, except that radius ρ  is read for y and angle θ  is read for x . The regular conic and 
azimuthal projections fall into category D, and the pseudo-conical (such as Bonne's) into C. 
Category A may have a few projections like A (rectangular) for which polar coordinates are 
more convenient than rectangular. There are no well-known projections in B (polar). 

 
Hans Maurer's detailed map projection treatise of 1935 introduced a "Linnaean" classification with 
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five families ("true-circular," "straight-symmetrical," "curved symmetrical," "less regular," and 
"combination grids," to quote a translation) subdivided into branches, subbranches, classes, 
groups, and orders (Maurer, 1935). As Maling says, Maurer's system "is only useful to the 
advanced student of the subject," but Maurer attempts for map projections what Linnaeus, 
the Swedish botanist, accomplished for plants and animals in the 18th century (Maling, 1973, p. 98). 
Other approaches have been taken by Goussinsky (1951) and Starostin (1981). 

SUGGESTED PROJECTIONS 
 

Following is a simplified listing of suggested projections. The recommendation can be 
directly applied in many cases, but other parameters such as the central meridian and 
parallel or the standard parallels must also be determined. These additional parameters are 
often chosen by estimation, but they can be chosen by more refined methods to reduce 
distortion (Snyder, 1985a, p. 93-109). In other cases a more complicated projection may be 
chosen because of special features in the extent of the region being mapped; the GS50 
projection (50-State map) described in this book is an example. Some commonly used projections 
are not listed in this summary because it is felt that other projections are more suitable for the 
applications listed, which are not all-inclusive. Some of the projections listed here are not 
discussed elsewhere in this book. 
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Region mapped 
 
1. World (Earth should be treated as a sphere) 

A. Conformal (gross area distortion) 
(1) Constant scale along Equator 
  Mercator 
(2) Constant scale along meridian 

Transverse Mercator 
(3) Constant scale along oblique great circle  
 Oblique Mercator 
(4) Entire Earth shown  
 Lagrange  
 August  
 Eisenlohr 

B. Equal-Area 
(1) Standard without interruption 

Hammer  
Mollweide  
Eckert IV or VI 
McBryde or McBryde-Thomas variations  
Boggs Eumorphic 
Sinusoidal 
misc. pseudocylindricals 

(2) Interrupted for land or ocean  
 any of above except Hammer Goode Homolosine 
(3) Oblique aspect to group continents  
 Briesemeister  
 Oblique Mollweide 

C. Equidistant 
(1) Centered on pole 

Polar Azimuthal Equidistant 
(2) Centered on a city 

Oblique Azimuthal Equidistant 
D. Straight rhumb lines 

Mercator 
E. Compromise distortion 

Miller Cylindrical 
Robinson 
 

2. Hemisphere (Earth should be treated as a sphere) 
A. Conformal 

Stereographic (any aspect) 
 B. Equal-Area 
 Lambert Azimuthal Equal-Area (any aspect) 

C. Equidistant 
 Azimuthal Equidistant (any aspect) 
 D. Global look 
 Orthographic (any aspect) 
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3. Continent, ocean, or smaller region (Earth should be treated as a sphere for 
larger continents and oceans and as an ellipsoid for smaller regions, especially 
 at a larger scale) 
 A. Predominant east-west extent 
 (1) Along Equator 
 Conformal: Mercator 
 Equal-Area: Cylindrical Equal-Area 
 (2) Away from Equator 
 Conformal: Lambert Conformal Conic 
 Equal-Area: Albers Equal-Area Conic 
 B. Predominant north-south extent 
 Conformal: Transverse Mercator 
 Equal-Area: Transverse Cylindrical Equal-Area 

C. Predominant oblique extent (for example: North America, South America, Atlantic Ocean) 
Conformal: Oblique Mercator 
Equal-Area: Oblique Cylindrical Equal-Area 

D. Equal extent in all directions (for example: Europe, Africa, Asia, Australia, 
 Antarctica, Pacific Ocean, Indian Ocean, Arctic Ocean, Antarctic Ocean) 
 (1) Center at pole 
 Conformal: Polar Stereographic 
 Equal-Area: Polar Lambert Azimuthal Equal-Area 
 (2) Center along Equator 
 Conformal: Equatorial Stereographic 
 Equal-Area: Equatorial Lambert 
 Azimuthal Equal-Area 
 (3) Center away from pole or Equator 
 Conformal: Oblique Stereographic 
 Equal-Area: Oblique Lambert 
 Azimuthal Equal-Area 

E. Straight rhumb lines (principally for oceans) 
 Mercator 

F. Straight great-circle routes 
 Gnomonic (for less than hemisphere) 

G. Correct scale along meridians 
 (1) Center at pole 
 Polar Azimuthal Equidistant 
 (2) Center along Equator 
 Plate Carree (Equidistant Cylindrical) 
 (3) Center away from pole or Equator 
 Equidistant Conic 
 

 

 


