Introduction to Geographic Information Systems

Part B

NPS Introduction to GIS: Lecture 1

Based on NIMC and Other Sources

MODELLING AND STRUCTURING DATA

(How we represent features or spatial elements)

Representing Spatial Elements

Representing Spatial Elements

Stores images as rows and columns of numbers with a Digital Value/Number (DN) for each cell.

Units are usually represented as square grid cells that are uniform in size.

Data is classified as "continuous (such as in an image), or *thematic* (where each cell denotes a feature type.

Numerous data formats (TIFF, GIF, ERDAS.img etc)

Representing Spatial Elements

Vector

Allows user to specify specific spatial locations and assumes that geographic space is continuous, not broken up into discrete grid squares

We store features as sets of X,Y coordinate pairs.

Entity Representations

We typically represent objects in space as three distinct spatial elements:

Points - simplest element

Lines (arcs) - set of connected points

Polygons - set of connected lines

We use these three spatial elements to represent real world features and attach locational information to them.

Attributes

- In the raster data model, the cell value (Digital Number) is the attribute. Examples: brightness, landcover code, SST, etc.
- For vector data, attribute records are linked to point, line & polygon features. Can store *multiple* attributes per feature. Vector features are linked to attributes by a *unique feature number*.

Raster vs. Vector

Raster Advantages

The most common data format

Easy to perform mathematical and overlay operations

Satellite information is easily incorporated

Better represents "continuous"- type data

Vector Advantages

Accurate positional information that is best for storing discrete thematic features (e.g., roads, shorelines, sea-bed features.

Compact data storage requirements

Can associate unlimited numbers of attributes with specific features

GIS FUNCTIONALITY

(What do they do?)

- Data Assembly
- Data Storage
- Spatial Data Analysis and Manipulation
- Spatial Data Output

Data Input/Creation

Spatial Data Manipulation and Analysis

- Common Manipulation
 - Reclassification
 - Map Projection changes
- Common Analysis
 - Buffering
 - Overlay
 - Network

Spatial Analysis

• Overlay function creates new "layers" to solve spatial problems

Spatial Data Output

- Tables
- Maps

Shape	ið	1_code	L code description	283	exs description	กลกา	
Polygon	1	AL020	Built-Up Area	999	Other	Vinkovci	
Polygon	2	AL020	Built-Up Area	999	Other	Nustar	
Polygon	3	AL020	Built-Up Area	999	Other	Bobota	
Polygon	4	AL020	Built-Up Area	999	Other	Otok	
Polygon	5	AL020	Built-Up Area	999	Other	Bijelo Brdo	
Polygon	6	AL020	Built-Up Area	999	Other	Trpinja	
Polygon	7	AL020	Built-Up Area	999	Other	Komletinci	
Polygon	8	AL020	Built-Up Area	999	Other	UNK	
Polygon	9	AL020	Built-Up Area	999	Other	Backi Monostor	
Polygon	10	AL020	Built-Up Area	999	Other	Hercegszanto	-
•							•

- Interactive Displays
- 3-D Perspective View

